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ABSTRACT 
 
“Megafire” events, in which large high-intensity fires propagate over extended periods, can 
cause both immense damage to the local environment and catastrophic air quality impacts on 
cities and towns downwind. Increases in extreme events associated with climate change (e.g., 
droughts, heat waves) are projected to result in more frequent and extensive very large fires 
exhibiting extreme fire behavior (IPCC, 2007; Flannigan et al., 2009), especially when 
combined with fuel accumulation resulting from past fire suppression practices and an expanding 
wildland-urban interface. Maintaining current levels of fire suppression effectiveness is already 
proving challenging under these conditions, making more megafires a strong future possibility.  

This project examines the weather and climate factors related to known megafires and very large 
wildfires that have occurred across the contiguous United States and projects the likelihood of 
megafires occurring during the 2046-2065 mid-century time period. A variety of statistical 
techniques and spatial scales are used in the analysis. The report ranks regions of future higher 
likelihood very large fire locations based on overall probability. In addition, the potential for 
large-scale smoke impact effects from very large fires is examined. This includes the overall 
potential for smoke emissions, as well as the potential for downwind transport to various kinds of 
sensitive receptors. Types of sensitive receptors examined include Class 1 airsheds, National 
Ambient Air Quality Standards non-attainment areas, and overall human population exposure. 
Smoke emissions and downwind transportation are combined to create an overall metric of 
Smoke Impact Potential (SIP). Combining future very large fire projections with site specific 
Smoke Impact Potentials allows for the ranking of locations based on the potential for large scale 
smoke impacts from very large fires.  

While overall megafire risk is high in many parts of the western U.S. as well as in more limited 
areas along the east coast and the upper Midwest, the potential human population exposure from 
megafires is heavily concentrated in California, Minnesota, and along the eastern seaboard. A 
complete ranking of these locations is provided in the report.   
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1.  INTRODUCTION  
 
This project was designed to examine changes in the occurrence of megafires and their 
potential smoke impacts on population centers under climate change scenarios. Observed 
increases in the occurrence of very large wildfire, or ‘megafires,’ in recent decades have 
increased concerns of widespread air quality impacts. Identifying those areas where megafires 
are likely to occur in the future and prioritizing these areas based on their potential air quality 
impacts can help prioritize management actions that may be able to mitigate megafire risk and 
impact.  
 

Background  
 
“Megafire” events, in which large high-intensity fires propagate over extended periods, can 
cause both immense damage to the local environment and catastrophic air-quality impacts on 
cities and towns downwind. The extensive 2010 fires in western Russia are perhaps the best 
example of megafires’ potential to impact air quality, as widespread and prolonged smoke 
pollution exposed millions to unhealthy air. Increases in extreme events associated with climate 
change (e.g., droughts, heat waves) are projected to result in more frequent and extensive very 
large fires exhibiting extreme fire behavior (IPCC, 2007; Flannigan et al., 2009), especially when 
combined with fuel accumulation resulting from past fire exclusion and an expanding wildland-
urban interface. There is a pressing need both to identify future potential megafire situations and 
to understand their full impact on the environment, including implications for air quality. Future 
fire-management strategies will also be complicated by recent and expected stricter air quality 
standards on particulate matter, ozone, and regional haze, all of which are exacerbated by smoke, 
and non-fire emissions from demographic, land-use, and other sector changes that contribute to 
increased “background” pollution.  

 

Known issues – defining megafire 
 
While no strict objective definition of “megafire” has been agreed upon – indeed, studies of 
megafire (e.g., Brookings, 2005) have pointed to the socio-political aspects of what is labeled a 
“megafire” – megafires are commonly understood to be very large, intense, and uncontrollable 
fires. Some have displayed highly energetic fire behavior (e.g., the 2009 “Black Saturday” fires 
in Australia), while others have had prodigious prolonged fuel consumption (e.g., the 2007 
Okefenokee Swamp fires). Regardless of the particular label, there is a clear need to understand 
and predict periods when such very large and prolonged fires can develop in a way that is not 
responsive to standard suppression, and to quantify their impacts on cities and towns downwind. 
For this reason, in the report, we use the generic term “megafire” to mean not just known, named 
megafires, but also the very largest fires (identified as the largest 0.5-5 % of fires by size) and we 
refer to identified megafires (e.g., in Brookings, 2005) as “named megafires.”  



 

 -2- 

Project objectives 
 
The major project objectives were to: 

• Identify the likely locations and timings of future megafires; 
• Analyze the ability of smoke from these potential megafires to reach cities and other 

sensitive receptors. 
Secondary goals were to create probabilistic models of megafires from fire-climate and fire-
weather relationships and apply these models to climate scenarios to project megafires for the 
mid-21st century; quantify the smoke impacts from these megafires on cities; and assess how 
these smoke plumes might affect regional haze and other visibility concerns.  

 

Project outline and progress 
 
The project focused on a sequence of questions: 

• What is a megafire? 
• When and where have megafires occurred?  
• What are the commonalities and differences in factors that contribute to their occurrence? 
• How can we predict megafire occurrence probabilities from weather, climate, ecosystem 

type, and other information? 
• Where are megafires most likely to occur in the future?  
• What are the likely smoke impacts from these projected megafires? 
• What are the implications in terms of visibility, the National Ambient Air Quality 

Standards, etc.?  
• How can we rank the locations where megafires are likely to occur? 
• How does this ranking change when we consider the smoke implications? 

 
To address these, the project undertook a sequence of linked steps: 

• Examined the commonalities and differences in megafires; 
• Decided on an objective definition of megafires; 
• Created a statistical model of megafire occurrence;  
• Projected future megafire probabilities under future climate scenarios; 
• Given future megafire probabilities, projected future megafire emissions; 
• Examined where the projected megafire smoke emissions will likely go; 
• Examined the impact of projected megafire smoke on populations; 
• Examined the impact of projected megafire smoke on visibility and other air quality 

concerns; 
• Ranked the locations most at risk for future megafires; and 
• Refined these rankings based on potential smoke impacts. 
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2.  STUDY DESIGN  
 
After the study initially defined megafires and found commonalities in megafires, the Study 
Design encompassed two analytical tracks: (i) creating statistical models of megafire probability 
and using these models with climate projections to model future megafire probability, and (ii) 
analyzing the smoke impacts of future megafires. Several successive statistical models of 
megafire probabilities were created – one at a regional (GACC) scale, one at an ecoregion 
scale, one at a Predictive Service Area scale, and one at a ~60km grid scale. A large-scale 
synthesis effort examined the many different approaches, focusing on the best methodologies 
and results described here. 
 

Overview 
 
This work primarily relies on synthesizing existing datasets and model output, supplemented 
with focused modeling to support conclusions or fill information gaps. Many models and 
datasets used to analyze the potential smoke impacts from megafires were previously developed 
in other projects or available through outside sources, as were the weather, climate, and fire 
indices used to identify potential future megafire locations.   

 

Study area / scope 
 

• Space:  CONUS (lower 48 states).  

• Time:   Historical period: 1984-2012.   
Future period: 2041-2070.  

• Fire size: Fires ≥1000 acres.   

 

Datasets 
 
There are several datasets used in this work:   
 

Fire occurrence and size:  
We use fire occurrence from the Monitoring Trends in Burn Severity (MTBS) 
database for the period 1984-2012. MTBS records all fires greater than 1000 acres 
in the western U.S. and all fires greater than 500 acres in the eastern U.S. Some 
fires smaller than this are also recorded in MTBS, but we filter out all fires < 1000 
acres of final fire size here. We also determine final fire size from only the 
portion of the MTBS perimeter categorized as burned (eliminating ‘unburned to 

low’ category). This can significantly reduce the final fire size as compared what 
would be estimated using only the fire perimeter (Kolden et al., 2012).  Data 
available at: 
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•  http://www.mtbs.gov/ 
 

Historical weather:  
We use 4-km daily gridded weather data for 1979-2012 produced from daily 
surface meteorological data of Abatzoglou (2013).  Data available at: 

•  http://metdata.northwestknowledge.net/ 
 
Future weather and climate: 

We use 4-km daily gridded daily weather for 1950-2099 time periods produced 
through downscaling of global climate model data using the Multivariate 
Adaptive Constructed Analogs method (Abatzoglou and Brown, 2012).  A total of 
17 global climate models (GCM) were downscaled for both historical (1950-
2005) and future (2006-2099) simulations using Representative Concentration 
Pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) for the period 1950-2005 and 
Representative Concentration Pathway 8.5 for 2006-2099. Data available at: 

•  http://maca.northwestknowledge.net  
 

Trajectory climatology:  
We utilize a cached set of 600 Million+ forward trajectories done as part of JFSP 
Project #10-S-02-1 (PI: Larkin). These trajectories were created by performing 
forward HYSPLIT trajectory runs every 6 hours for a 30-year period (1979-2009) 
across CONUS and are available through JFSP Project #10-S-02-1 
(11Terrabytes). 

 
 
Gridded historical weather data for smoke dispersion: 

For smoke-dispersion modeling, fully evolving gridded 4-dimensional (x,y,z,t) 
weather data are required. We use the modeled output from the North American 
Regional Reanalysis system, a combined model and assimilated weather 
observation dataset. Data available at: 

• http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html 
 

Typical Emissions By Location: 
 This dataset was created as part of the Smoke and Emissions Model 

Intercomparison Project (#8-1-7-4) for the Fires Anywhere test case. Data 
available by contacting the authors.  

 
 

Static data layers 
 

Ecoregion boundaries:  
For modeling and analysis purposes, we use both the Bailey (Bailey, 1995) and 
Omernik (Omernik, 1987) ecoregion polygons. Data available at: 

• http://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-
states/ (Bailey)  

• http://www.epa.gov/wed/pages/ecoregions.htm (Omernik). 



 

 -5- 

 
GACC and PSA boundaries:  

We use the geographic boundaries of the National Interagency Fire Center 
Geographic Area Commands (GACCs) and their corresponding Predictive 
Service Areas (PSAs). Obtained through the Northwest Coordination Center 
(NWCC). 

 
 

Class 1 airshed boundaries, non-attainment areas GIS layers:  
Obtained from government web sources: 

� Class I areas: http://www.nature.nps.gov/air/maps/classILoc.cfm 
� Non-attainment area 

boundaries: http://www.epa.gov/airquality/greenbook/gis_download.ht
ml 

� Design values by county: http://www.epa.gov/airtrends/values.html 
 
 

 Methods 
 
The overall methodology is described in the following diagrams (Figures 1-3).   
 
We project the likelihood of future Megafires by combining observed relationships between past 
very large wildfires and climate indices with existing future climate scenarios from multiple 
CMIP5 climate models (Figure 1).  To accomplish this, in order do this, a large amount of work 
was necessary:  
 

• First, we defined Megafires for use in this analysis. We explored multiple definitions, 
including fire size thresholds that vary as a percentile of observed fire sizes and static 
thresholds defined objectively across the landscape. We note that statistical models to 
predict only the most extreme 1% of observations, e.g., megafires as traditionally 
defined, are unlikely to be successful. We ultimately used a threshold of  > 50,000 acres, 
defining it as a Very Large Fire (VLF), and built models of these very large fires to 
understand and approximate the climate factors associated with Megafires. However, 
prior to adopting this methodology, we performed a case study of a large number of 
Megafires to look for commonalities in fire progression, growth, size, terrain, 
management activities, and other factors. 

• Second, we created a set of statistical models for the likelihood of a very large fire.  
Models were based on observed fires and their relationships with vegetation, weather, 
climate, and other factors. These models were developed at a number of spatial scales. 

• Finally, using downscaled future weather and climate information and the statistical 
models developed here, we projected VLF likelihoods into the future using a number of 
future climate simulations.  
 

Concurrent with the megafire statistical analysis, we examined the probability that smoke from a 
fire would reach various kinds of sensitive receptors, based on historical weather (Figure 2). For 
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each source location, the resulting aggregate map of Smoke Impact Potential (SIP) takes into 
account the following: 
 

• The typical emissions rate for that location based on local fuel loadings and typical 
wildfire fuel moisture conditions;  

• The typical weather patterns for that location and where it will transport the smoke based 
on the time of year; 

• The sensitive receptors (see below) located in the region where the smoke will be 
transported.   
 

Several versions of the SIP were created based on the receptors of interest: 
• SIP based on impacting human populations; 

 
Figure 1. Schematic methodology for projecting future megafire probabilities (approximated 
as Very Large Fire Likelihood). See text for discussion. 
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• SIP:HAZE based on impacts on Class 1 airsheds protected under the Regional Haze rule; 
and 

• SIP:NAAQS, further separated into PM2.5 and Ozone, based on impacts on areas 
currently in non-attainment or near non-attainment (within 15% and 30%) areas. 

These are discussed further in the relevant sections. 

 
 
Figure 2. Schematic methodology for determining the ability of source location to impact 
receptors. Receptor types are human population, Class 1 Airsheds protected under the 
Regional Haze Rule, and areas deemed non-attainment under the National Ambient Air 
Quality Standards (NAAQS). Climatologies were determined through trajectory modeling 
using historical weather and validated against case studies using dispersion modeling. These 
climatologies are used to create a summary Smoke Impact Potential (SIP) by climatological 
week (e.g., number of people in transport area for that week). See text for discussion. 
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We then combined the VLF Likelihoods with the relevant SIP to generate an overall Smoke Risk 
metric (Figure 3). This was done by multiplying the VLF Likelihood at each location and 
climatological week by the SIP for that location and climatological week: 

 

Smoke Riskx,y,clim week = VLF Likelihood x,y,clim week * SIP  x,y,clim week 
 

Note that Smoke Risk estimated here is a measure of how smoke from the source location (fire 
location) might impact human populations in the future, both because of the probability of a VLF 
at that source location and because of the ability of that smoke to be then transported into human 
population centers. It is not a measure of overall smoke impacts at the fire location.  

Summary results comparing the locations with the highest overall risk of a VLF and those with 
the highest overall Smoke Risk are shown in Section 3. 
 

Summary of Methods Used 
 

This is a short summary of the methods used. For details on the methods, please see the relevant 
Appendices as well as the published papers stemming from this work. 
 

Defining Megafires 
 
Megafire Definitions Used Here: 

• Multiple fire size definitions were tried during the course of this project (Appendix A). 
• Various categorical approaches to describe megafires were considered. 
• Ultimately we used the following definitions in different aspects of the work: 

 
Figure 3. Schematic of creating overall Smoke Risk, based on combining the likelihood of a 
very large fire (VLF) with the ability of a fire in that location to reach receptors – human 
populations (Smoke Impact Potential or SIP), Class 1 airsheds for Regional Haze issues 
(SIP:HAZE), non-attainment areas for PM2.5 and Ozone (SIP:NAAQSPM2.5, O3). See text for 
discussion. 
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o Final fire size ≥ 50,000 acres 
o Final fire size ≥ 12,500 acres. 

 
Megafire Definition Case Study: 

• 21 megafires were identified (Appendix B). 
• Commonalities and differences were examined across various dimensions, including 

location, fuel type, growth patterns, management (suppression) activities and response, 
national and regional preparedness levels, among others. 

 

Modeling Megafires and Future Megafire Projections  
 
Statistical Modeling: 

• Exploratory data analysis was done before deciding on a statistical technique and the 
level of aggregation of the data (Appendix C). 

• Logistic regression models estimating the likelihood of a very large fire given current 
weather and fuel conditions were estimated at the regional (Geographic Area 
Coordination Center, GACC) scale (Appendix D). 

• Stepwise selection of covariates was used to build a set of generalized linear models 
(GLMs) at the sub-ecoregion (60-km) scale (Appendix E). 

• Both antecedent and concurrent weather conditions were analyzed. 
• Ecosystem types, regions, and other location features were used as conditioning 

variables. 
 
Future Climate Scenarios and Future Megafire Projections: 

• Downscaled weather information from future climate scenarios for 2041-2070 was used.  
• The intervening time period (current – mid century) was also examined. 
• Downscaling was done for 17 different climate model runs spanning both the RCP4.5 and 

RCP8.5 scenarios. 
• The likelihood of future very large fires was estimated at regional (GACC), Predictive 

Service Area (PSA), and sub-ecoregional (60-km grid) scales (Appendices E and F).  
• Results from these projections were compared with available literature (Appendix G). 
• For the sub-ecoregional projections, a multi-model mean was created along with a 

weekly climatology based on the 30-year future period (2041-2070). 
• Monthly and annual values were created for Very Large Fire risk.   
• Locations were ranked based on this overall annual Very Large Fire likelihood (see 

Section 3). 
 
 
Smoke Impact Assessment (need a reference to Appendix J) 
 
Emissions Potential: 

• Typical emissions for each location were calculated using the Fuel Characteristic 
Classification System (FCCS) fuelbed map and the Consume 4.0 model using typical fuel 
moisture conditions for the wildfire season at that location (Appendix H). 
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Trajectory Modeling and Smoke Impact Potential: 
• Trajectory modeling results were taken from an existing project (Larkin et al., 2013, JFSP 

Project #10-S-02-1) and reanalyzed. 
• Trajectory modeling was based on a 31-year period (1979-2009) using the North 

American Regional Reanalysis weather dataset with trajectories released every 6 hours 
from each of 1926 starting locations across CONUS (Appendix I). 

• Trajectories were converted to transfer functions: T(source location, receptor location). 
• Impact potential was created by weighting the transfer function by the receptor value 

(e.g., population) at the receptor location and integrating across all receptors.  
• Smoke Impact Potential was created by further weighting the impact potential by the 

emissions potential of the source 
 

!"#!"#$%& = !!"#$%&,!"#"$%&!×!!"#"$%&!
!""!!"#"$%&!'

×!"!"#$%& 

 
where T is the transfer function connecting the source and receptor, W is the receptor 
value (e.g., population) at the receptor location, and EM is the emissions potential of the 
source. 

• Separate SIP analyses were done for: 
o Population (labeled here SIP) 
o Class 1 airsheds (labeled here SIP:HAZE) 
o PM2.5 non-attainment areas (labeled SIP:NAAQSPM2.5) 

! Currently designated areas 
! Derived areas based on a 15% and 30% tightening of the PM2.5 

standard 
o Ozone non-attainment areas (labeled SIP:NAAQSO3) 

! Currently designated areas 
! Derived areas based on a 15% and 30% lowering of the PM2.5 

standard. 
 

Overall Smoke Risk: 
• Overall smoke risk was assessed by multiplying (scalar multiplication/vector dot-

product) the future VLF likelihoods with the SIP maps. 
• In doing this, the VLF likelihoods were first aggregated into a multi-model mean and 

weekly climatology from the 30-year future period (2041-2070). 
• Smoke risk was calculated separately on a climatological week basis. 
• Monthly and annual aggregates were created by summing and/or averaging over the 

weekly values. 
• Locations were ranked based on the annual mean overall value of Smoke Risk (see 

Section 3). 
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Limitations and Caveats 
 

This section outlines the challenges and limitations of our analysis.  
 

• Statistical models predicting the probability of Very Large Fires (VLFs) have the 
following challenges:  

o VLFs are rare—therefore, there are limited occurrences, making statistical models 
challenging. 

o Climate precursors and weather drivers may be at different scales. 
o There may be temporal lags between fire weather, fire detection, and fire 

occurrence. 
o Suppression information was not included in the models. 
o We assumed that processes driving the probability of VLFs in the past are the 

same as those that will drive the probability of VLFs in the future.  
See Appendix C for further discussion. 

• To project megafires into the future, we focused primarily on surface variables that were 
available both from historical analyses and also from future statistically downscaled 
climate scenarios. This necessarily limited our ability to utilize fire weather indices that 
require high temporal/spatial resolution (e.g., near-fire, hourly) because these data were 
unavailable for the future climate scenarios. Daily gridded winds and other variables 
were used at the best resolutions available, but these are not as likely to have strong 
predictive value for determining the likelihood of a megafire as more local, temporalized 
data. This limitation of the current analysis has been identified as a needed next step.  
Similarly, for the majority of fires used in the statistical analyses, daily growth data were 
not available, making statistical connections between daily growth and daily/sub-daily 
weather data difficult to model. 

• Future weather patterns were not used for the smoke transport analysis. Smoke transport 
analysis requires very high resolution 4-dimensional weather information (x,y,z,t) that is 
not available for most of the climate model runs used. Instead, our analysis disconnects 
the future megafire likelihood projection from the smoke transport question. Our 
analysis, therefore, assumes that typical (i.e., prevailing) wind conditions by 
climatological week remain the same in the future.  

• Vegetation succession is not included in the models of future very large wildfires. In 
projecting future megafire likelihood, we assume that the vegetation type remains 
constant in a given location. Additionally, we assume that typical fire emissions for a 
location remain similar to what would occur under present conditions. Vegetation 
succession is not well understood yet has the potential to greatly influence model 
predictions. In many ways, this ‘status quo’ vegetation assumption is the simplest 
available. In most cases, it will tend to underpredict megafire potential. 

• Smoke transport from trajectories does not properly take into account dispersion in the 
smoke plume. A full dispersion model was not used for the Smoke Impact Potential 
assessment because it would require exponentially more computer time than was 
available. As it was, over 600 million trajectories were utilized; performing the over 30M 
dispersion model runs necessary would take an estimated 100+ CPU years of computer 
time, with similarly increased data storage and data analysis issues. Instead we use full 
dispersion runs to validate the overall approach here (Appendix K). 
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Changes Made to Proposed Methodology 
 

Several changes to the proposed methodology were incorporated as the research progressed, in 
order to address the challenges we encountered. These include:  

• We were unable to objectively identify a threshold of climate, weather, or fire danger 
indices that separated megafires from non-megafire large (>1000 acre) fires. Whereas 
megafires were far more probable during certain environmental conditions, the diversity 
of conditions during which megafires were initiated and during which they grew made 
such an effort unfeasible. Instead, we used a statistical methodology for estimating the 
probability of a VLF, given particular combinations of indices.     

• Similarly, the ability to estimate screening vs. scaling functions as envisioned in the 
original document has been modified. Currently, the statistical modeling uses both an 
occurrence of large fires component as well as a probability of a megafire given the 
occurrence of a large fire component. These are conceptually related to the proposed 
screening and scaling functions.  

• While the top 5% of fires for each National Predictive Service Area (PSA) was 
examined, in many cases the top 5% of fires for a given PSA included relatively small 
fires (e.g., in western Washington fires of ~50 acres). This makes distinguishing 
conditions that separate these fires from other “large” fires nonsensical or intractable.  
Thus, this component of the project was eliminated in favor of the VLF definitions used 
here.   

• The climatological trajectory database used here is of forward trajectories from a grid of 
starting locations rather than backwards trajectories from a set of sensitive receptors.  
This became necessary because of the methodological issues discovered in back-
trajectory modeling near mountain ranges as discussed in the Final Report for Project 
#10-S-02-1. This change necessitated considerable additional work – both due to the 
massive size of the forward trajectory database compared with the backwards trajectory 
database, and the need to create smoke impact transfer functions that show the patterns of 
impacts from each source location. 
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3. KEY FINDINGS 
 

The project’s main goals were to develop, first, a ranking of areas where ‘megafires’ will be 
more likely in the future, and, second, a re-ranking based on the capability of these projected 
megafires to impact populations. Of course, such an endeavor necessarily involves a great 
many steps with significant intermediate work and results, as discussed below. However, for 
greater simplicity and clarity in this report, we first present the main conclusions and then 
discuss the analyses by which these results were generated.  

The sections below present (a) summary key findings based on the ultimate ranking of both 
future mid-century megafire likelihood and the smoke impacts from future megafires; and (b) 
select key findings from component parts of the overall project including findings on the 
definition of a megafire, when and where megafires have occurred, what key weather and 
climate variables were found to be most related to megafires in the statistical modeling done, 
what these statistical models tell us about megafires in the future, and what can be said about 
smoke impact potential across the country.  

 

SUMMARY RANKINGS 

 

Summary rankings:  Megafire likelihood 
 
Figure 4 shows the overall ranking of locations across the country based on future VLF 
occurrence. Overall risk is presented normalized to the highest value found in any cell. The 
figure is a summary of the findings of the project across all future climate model runs and 
scenarios. It necessarily obscures significant additional information available by examining the 
climatological monthly cycle of the results, the details of the statistical model, and intermodel 
differences between individual climate runs (see additional results and discussion additional Key 
Findings sections below). Additionally, while specific individual grid cells are ranked, at this 
overall level, the results are most robust when regional areas of high or low ranking are 
compared, rather than the specific numeric rank of any individual cell. 

 
• The highest ranking areas in terms of overall Very Large Fire likelihood are 

found across the western U.S. including the Rockies, Cascades, Sierra-
Nevadas, and Great Basin regions.   

• The eastern U.S. shows smaller overall likelihoods as compared with the 
western U.S. However, the increase in likelihood compared with current 
conditions is still significant (see below). 

• Outside of the west, the areas with the most likelihood are found in: 
o The upper Minnesota / Wisconsin / Upper Peninsula region; 
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o The southeastern seaboard including the Carolinas, Georgia, and 
Florida; and 

o The Ozarks. 
Note: While the Ozarks are ranked high, this higher than expected rank (#46) 
appears to be an artifact of the statistical methodology used. 

 

Summary rankings:  Smoke risk 
 
Figure 5 shows the overall smoke risk derived from connecting the overall likelihoods with the 
typical ability for a fire in a given region to emit smoke as well as the climatological transport 
patterns and the potential downwind population. This can be considered a summary re-ranking of 
the results found in Figure 4 based on the ability of a fire in each location to impact population.  
As in Figure 4, the results are normalized against the highest value found in any cell (see Section 
2 for methods and caveats). 
   
 

• The overall pattern is somewhat similar to that found for overall likelihood 
of Very Large Fires, but areas that are either climatologically upwind of 
population centers and/or have the potential for large organic consumption 
are ranked higher. 

• California with its large population becomes highlighted, as well as both 
areas upwind of population centers in Nevada.  

• The upper Minnesota region ranks higher than previously due to the 
potential for very large emissions from peat fires. 

• Significant portions of the Rockies are reduced in rank, excepting those 
areas near population centers (e.g., Denver). 

• The Ozarks are elevated in rank due the potential for smoke to transport to 
both Midwest and eastern population centers.  

• The eastern seaboard retains areas of significant overall risk, but the 
rankings for these regions—particularly those with the potential for 
significant deep organic consumption—are tempered due to the prevailing 
westerly winds that tend to cause smoke to transit out into the Atlantic. 
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Figure 4. Relative mean annual likelihood of Very Large Fires (VLFs ≥12.5k acres) occurring in the future. Based on downscaled weather and 
climate information from 17 future climate model runs of the period 2041-2070 using statistical fire model developed for this project. All cells 
normalized to the highest likelihood in any cell (=1). See Methods for discussion. Results are aggregated to a 64km grid and normalized to the 
maximum value at any grid cell (16% chance of a VLF occurring per year per grid cell 4096 sq km). The top 100 grid cells are listed.      
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Figure 5. Relative mean annual Smoke Risk from Very Large Fires (VLFs) in the future. Here Smoke Risk = VLF Likelihood * Smoke 
Impact Potential (SIP). All cells normalized to the highest risk in any cell (=1). VLF likelihood is shown in Figure 4. SIP based on 
analysis of historical weather patterns and the potential for population exposure. See Methods for discussion. Results shown 
aggregated to a 64km grid and normalized to the maximum value at any grid cell. The top 100 grid cells are listed.      
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DEFINITION AND HISTORICAL PATTERNS 
 

What is a ‘megafire’?  
 

• The term megafire is ill-defined. 
• No consensus definition of a megafire exists. 
• A case study of 21 megafires showed: 

o Some commonalities: 
� Size 
� Occurred during anomalous drought or fire danger conditions 
� Many burned most of their final size within 10 days 

o Significant differences: 
� Duration 
� Fire progression 
� Cost 

o 3 different management pathways. 
• Very Large Fires can be used as a proxy for megafires. 

 
One of the major issues with this work was defining the term megafire. Generally taken as very 
large fires with significant socio-political impact, the term megafire is ill-defined, and no 
consensus definition in the literature was found. (See Appendix A for a more complete 
discussion). 
 
Using a case study of 21 megafires that have some agreement within scientific and management 
circles, we examined whether there were distinct commonalities in what occurred, including fire 
behavior, firefighting strategies and staffing, and other issues (see Appendix B). This case-study 
approach found three different clumps of management pathways in the suppression of these fires 
- a high level of burnout operations, low priority delayed response, and low priority limited 
suppression resources.    
 
To avoid issues with definitions, we use final fire size to create an objective definition for VLFs 
and use these as a proxy for so-called megafires. While this simplification ignores the socio-
political aspects of ‘megafire,’ it provides a replicable objective definition that generally agrees 
with expectations of what the term megafire means. Two definitions are used here for VLFs, 
although the results found are substantially similar regardless of which definition is used.   

 

Where and when have megafires occurred?  
 

• Very Large Fires have been observed in recent decades across large parts 
of the United States, with geographic hotspots in southwestern California, 
the northern Great Basin, and central Idaho mountains.  
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Using satellite-derived burned area from the Monitoring Trends in Burn Severity (MTBS) 
database from 1984-2010, we mapped out the location of all large fire and VLF according to the 
definitions discussed above (Figure 6). While VLFs were found across most of the US, they were 
rather sparse east of the Mississippi, with a cluster of VLF in the southern Appalachians near the 
Kentucky-West Virginia border that burned during the autumn and a cluster in Florida that 
occurred throughout the year. VLFs were observed in the southern Great Plains primarily in the 
spring. Nearly all of the fires in the western US from the Rockies to the Pacific coast occurred 
from May through October. The highest density of VLFs was found in southwestern California, 
the northern Great Basin covering northern Nevada, eastern Oregon and southern Idaho, and the 
mountains of central Idaho. Other regions of high VLF density included the eastern slopes of the 
Cascades, northern Sierra Nevadas, and the northern Rockies. These same areas also had the 
highest density of large fires exceeding 1,000 acres. 
 
Fires exceeding 50,000 acres in size were similarly concentrated in regions that experienced 
VLFs. The greatest concentration of such fires was in the northern Great Basin where invasive 
annual grasses such as Bromus tectorum have increased fuel connectivity and the potential for 
extremely large wildfires when environmental conditions are favorable. The peninsular and 

 
Figure 6. Location and timing of VLF (>12,500 acres) and fires greater than 50,000 acres 
for the MTBS period 1984-2010. The month of fire discovery as reported by MTBS is color-
coded to denote the timing of the fire. 
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transverse ranges of southwestern California experienced numerous fires exceeding 50,000 acres 
over the MTBS time period including fires that burned during the summer (e.g., Zaca fire of 
2007), and Santa-Ana wind driven fires in October 2003 and 2007. 
 
 

• Very Large Fire occurrence has grown over the past 3 decades. 
 
The number of VLFs and the amount of area burned in VLFs increased over parts of the US from 
1984-2010 (Figure 7). While the number varies by geographic area, nearly twice as many VLFs 
and over 150% more area burned in VLFs occurred during the second half of the MTBS record 
(1998-2010) than the first half (1984-1996) for the contiguous US. A larger rate of increase in 
the area burned in VLFs (160%) over the 27-year record versus all large fires mapped by MTBS 
<5kha (100%) suggests that VLFs have increasingly contributed to annual burned area. 
Collectively, the increase in both number and burned area in VLFs is likely a key contributor to 
the overall increased burned area observed over the period of record.  
 
A strong relationship exists between total annual burned area and the fraction of annual area 
burned in VLFs for the US. Years with large burned areas (e.g., 1996, 2000, 2006, 2007) had an 
anomalously high portion of area burned in VLFs. Regional climate anomalies are the 

 
Figure 7. Annual burned area for the contiguous United States from MTBS fires from 1984-
2010 for all fires, Very Large Fires (VLFs) exceeding 12,500 acres, and VLFs exceeding 
50,000 acres. The red and blue lines show the percentage of annual burned area in VLF 
exceeding 12,500 acres and 50,000 acres, respectively. 
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predominant driver of year-to-year variability in burned area and are hypothesized to be an 
important factor associated with VLF occurrence.  
 
 

• There are no universal conditions under which Very Large Fires have 
occurred.  

 
VLFs have occurred across a variety of ecotypes, climates and meteorological conditions making 
it challenging to define a clear niche under which such fires occur. Among the factors that 
influence the location and timing of VLFs are fuel type, antecedent climatic conditions, and 
concurrent fire danger conditions. Although the distribution of VLFs is significantly influenced 
by these factors, VLFs were observed across a comprehensive set of environmental conditions. 
 
While an individual fire may burn in heterogeneous fuels, we broadly classify fires that occurred 
in forested versus non-forested systems based on the level II Omernik ecoregion in which they 
fall. Over half (56%) of all VLFs and fires greater than 50,000 acres occurred in non-forested 
ecoregions. The characteristics of VLFs varied substantially between these two ecotypes with 
generally longer-duration fire events in forested systems versus short-lived rapid spread events in 
grassland and non-forested systems. 
 
Climatic thresholds did not appear to universally work in distinguishing VLFs. Over 80% of 
VLFs generally burned in weeks when 100-hour dead fuel moisture was less than 10% 
(compared to 55% of all MTBS fires). However, a few VLFs started when fuel moistures would 
otherwise be high enough (100-hour fuel moisture > 16%) to reduce fire activity, only to grow at 
later stages when conditions became more favorable. Similarly, longer-term drought conditions 
identified through the Palmer Drought Severity Index generally were aligned with VLF 
occurrence. However, these relationships were far from universal in nature. 
 
Finally, we based our analysis on VLFs that occurred over the 1984-2010 period. However, we 
acknowledge that the absence of mapped VLFs in a region does not restrict them from occurring 
there. For example, through fire atlases and tree-ring records we know that extremely large fires 
have occurred in places such as the Idaho Panhandle and western Washington where no VLFs 
were mapped.   
 
 

● But Very Large Fires are commonly driven by climatic and meteorological 
conditions.  

 
Despite the lack of well-defined thresholds under which VLFs occur, there were common factors 
under which most VLFs occurred. Specifically we focus on the time-varying contributions from 
antecedent climate as well as shorter-term fire danger and fire weather conditions. While the 
influence of antecedent moisture realized through the Palmer Drought Severity Index (PDSI) 
varied between ecoregions, VLFs occurred during prolonged periods of elevated fire danger 
(e.g., Energy Release Component, Duff Moisture Content) in both forested and non-forested 
fuels. When comparing VLFs to all fires mapped by MTBS it is clear that VLFs burned during 
substantially more acute fire danger periods than other large fires. As an example, a lead-lag 
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composite of Energy Release Component (ERC) percentiles for the fire centroid of over 7000 
fires in the western US is shown in Figure 8, separated by fires burning in non-forested and 
forested systems. For VLFs, the average ERC in forested systems in near the 95th percentile 
from the discovery date to nearly three weeks later, created a prolonged opportunity for fire 
spread and likely make suppression a challenge. By contrast, other large fires reach a lower 
percentile near the discovery date with diminished fire danger quickly thereafter, allowing for 
suppression activities.  
 
While VLFs disproportionately occurred during anomalous conditions, such conditions were not 
a requisite for VLFs. Rather, some VLFs occurred under conditions that from a purely 
atmospheric and climatic perspective would be classified as normal. Likewise, extreme 
conditions (e.g., high fire danger, long-term drought) did not always cause a VLF. 
 
Unlike the similar relationships between fire danger indices and VLFs in forested and non-

 
Figure 8. Composite of Energy Release Component (ERC) percentiles taken from the 
centroid of over 7000 fires that burned in the western US from 1984-2010 from MTBS. ERC 
percentiles were calculated at the local level and represent percentiles over the entire year 
(not just the fire season). A composite is separately shown for fires that burned in non-
forested ecoregions (left) and forested ecoregions (right) and separately for VLFs (red) and 
other large fires (blue). The shading represents the 95% confidence interval of the mean. The 
bottom two plots show composite PDSI from January a year prior to the fire year through 
November of the fire year. 
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forested systems, relationships between VLFs and PDSI varied significantly across these 
systems. In non-forested systems, PDSI was anomalously positive immediately prior to the 
commencement of the fire season for VLFs versus other large fires, likely linking the increased 
accumulation of biomass in the previous year and possibly in the spring immediately preceding 
the fire year to the likelihood of large fires. Conversely, PDSI was anomalously negative in 
forested systems concurrent to VLFs versus other large fires. These relationships agree with 
much of the prior research linking interannual variability in burned area to climate, which is not 
surprising given that much of the area burned during big fire years occur in VLFs. 
 
Overall, these relationships were generally applicable to regions across the eastern United States 
as well. In general, we found that the combined influence of interannual moisture variability, 
sub-seasonal drought stress and fuel moisture, and fire weather extremes were most influential in 
the occurrence of VLFs. For example, nearly 60% of all MTBS fires in Florida were VLFs when 
PDSI was below the 20th percentile, ERC was above the 85th percentile (averaged 10-days 
before to 10-days after fire discovery) and average measures of the Fosberg Fire Weather Index 
exceeded 2 standard deviations within 10-days after the fire discovery date. Thus, in many 
ecoregions, synchronized long and short term conditions were considered critical for capturing 
the timing of VLFs. These factors, which notably echo the conditions for extreme fire behavior 
(Werth et al., 2011), were used in our subsequent modeling studies.  
  
We focused primarily on top-down drivers of VLFs, acknowledging that biophysical bottom-up 
factors such as topography and vegetation as well as human factors such as ignition sources, 
access to suppression, prioritization were also important. Within some ecoregions at the top-
down scale, we did find that water balance metrics such as climatic water deficit and 
precipitation seasonality were important criteria in identifying regions within an ecoregion prone 
to VLF occurrence. Topographic complexity, defined as the standard deviation of elevation 
within a fire perimeter, was strongly linked to overall fire size in most ecoregions, suggesting 
that additional more spatially resolved modeling could improve upon the modeling work 
reported here. 
 
We hypothesized that VLFs may be predisposed to occurring when suppression resources are 
depleted due to widespread fire activity across multiple GACCs. Using daily National 
Preparedness Levels (PL) from 1990-2010 we found that PL were significantly higher during 
VLF. Given the spatial scales over which climate anomalies influence wildfire potential, it is 
unclear whether this relationship is purely independent. 
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MODELING MEGAFIRE PROBABILITIES 
 

Overall Findings 
 

● Modeling Very Large Fire (‘megafire’) probabilities is difficult due to limited events 
and scale mismatches.  
 

There are significant challenges in creating statistical models of megafires/VLFs.  These include 
both the limited number of events with which to create a statistical model and the temporal and 
spatial scale mismatches between the size of megafires/VLFs and weather and climate data 
available to characterize them. For example, limited availability of reliable daily growth data in 
historic records makes it difficult to compare fire growth with weather data. Most prior analysis 
and modeling has been conducted using aggregated fire and climate data over broad geographic 
and temporal scales. 
 

Regional Scale Model Findings 
 
 

● Key mechanisms vary by region / GACC. 
Broad-scale ecological mechanisms predictive of the risk of a large fire evolving into a 
very large wildfire differ by GACC. Within each GACC, the risk of a large fire becoming 
a very large fire is associated with identifiable climatology and can be reasonably well 
predicted by considering one or a combination of fire indexes just before, during, and up 
to three weeks after ignition date.  

 
● No single fire index was useful in every GACC.   

Indices of fuel moisture were found in the best model for every GACC except Southern 
California where large wind-driven fires during the fall predominate. Air temperature was 
positively associated with particularly large changes in very large fire risk in three of the 
eight GACCs.  

 
● Reasonable predictive skill was found in all regions. 

For all GACCs, a combination of typical fire index variables provided reasonable 
predictive power.  

 
● In the regional aggregate, what happened after the fire started was more 

important than what happened before. 
In only one region did the best model of risk of very large fire include a fire index 
observed before the ignition week. Fuel moisture variables were most commonly 
included during ignition week but in some cases fuel moisture as well as burning index, 
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duff moisture, energy release component, temperature and PDSI recorded up to three 
weeks after ignition date influenced the odds of a large fire becoming a very large fire. 
However, we did not consider subregional variability within a GACC such as contrasting 
fuel types and climate anomalies; there is clearly a need to conduct a more spatially 
representative modeling effort. 

 

Ecoregion / PSA Scale Findings  
 

● The statistical model of Very Large Fires, on average, is able to selectively 
pick out weeks and spatial locations where Very Large Fires have occurred.  

 
Synoptic variability was found to be a significant driver of VLF occurrences, especially in non-
forested ecoregions where rapid fire spread is favored by extreme fire-weather, as, for example, 
during Santa Ana wind-driven fires in Southern California and grassland systems in the central 
US. However, the metrics of short timescales of synoptic variability examined may be 
insufficient to predict VLFs in forested ecoregions such as Western Cordillera where fires 
typically grow over a longer time period; alternative metrics of ridge breakdown and short wave 
passage with widespread lighting may need to be developed and examined. Here, sub-seasonal 
drought viewed through ERC was a key predictor of VLFs in these flammability-limited 
ecoregions. Concurrent long-term drought described by PDSI was a complementary predictor in 
the Appalachian forests and Western Cordillera. These results concur with previous climate−fire 
linkages and the longer time period under moisture stress required to increase landscape 
flammability in ecosystems dominated by large-diameter trees. Antecedent moisture 
availabilities were a significant predictor in some fuel-limited ecoregions reinforcing heightened 
fire activity that corresponds to increased fuel biomass and connectivity a year following pluvial 
conditions.  
 
In general, VLF probabilities reach their highest amplitude during the spring in the eastern half 
of the country, the southwestern US during May and June, and much of the interior and 
northwestern US in mid to late summer (Figure 9). The mean number of VLF weeks expected 
was highest across the western US between May and September, consistent with the observed 
distribution of VLFs and their timing. 
 
As our models do not include ignition sources, or other bottom-up factors (e.g., fuel variability 
and connectivity), and incorporate predictors with strong spatial autocorrelation, they should not 
be expected to capture the exact location of the fire, but rather local-to-regional enhancements in 
likelihood probability (P). A temporal composite analysis of voxels reporting VLF-weeks shows 
peak P during the week of fire discovery (200% above climatology) with enhanced probability in 
the weeks prior to and following as expected with the serial correlation of many of the predictors 
used.  
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Figure 9. Mean monthly number of expected VLFs per 10,000 square km averaged over the 
1984–2010 period from climate−fire model outputs using aggregated observations from 
Abatzoglou (2013). 
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● Climate conditions have become conducive to Very Large Fire occurrence over 

the past three decades. 
 
A positive trend in mean annual P was observed over recent decades across much of the western 
half of the US, but also across some regions in the east, including the Southeast coastline and 
much of Florida. Likewise, an increase in VLF occurrence has been documented in most 
southern ecoregions. Increased VLF probabilities over the last three decades are consistent with 
observed increases in burned area and the number of large fires in recent decades, particularly 
across the western US. It is important to point out that our observed trends in P clearly isolate 
climatic conditions as becoming more favorable for VLFs, thereby removing confounding 
factors such as fire suppression and management as contributors. 
 
Most notable was the widespread increase in probabilities across the southern two-thirds of the 
western US, where our model estimated a 132% linear increase in probabilities over the 27-year 
MTBS period. This region has observed a pronounced increase in warm-season ERC and vapor 
pressure deficit over the last three decades in addition to reduced precipitation in the southwest 
that collectively promote chronic moisture stress and increased fire potential, particularly in 
forested systems. A significant increase in probabilities was also found across the southeast US, 
supporting the increase in VLFs in Florida over the period of record. Whereas fuel buildup and 
fire management have been attributed to widespread changes in fire activity and the number of 
large fires, our results suggest that the atmosphere has become more conducive to VLF 
occurrences in recent years. 
 

Modeling limitations 
 

● Modeling rare events such as Very Large Fires requires additional measures to 
ensure robustness.  

 
Models describing rare binary events are, by definition, designed from small samples, and 
consequently are often imbalanced, over-fitted, and may suffer from not being robust. Therefore, 
additional procedures are required to ensure stable and reproducible models. We employed 
resampling methods in model development and cross-validation to assess model robustness. We 
used GLM with a stepwise regression given their ability to model binary data. Models were 
developed for each GACC region and each ecoregion acknowledging regional differences in the 
biophysical drivers manifest through vegetation and climate, as well as human factors (e.g., 
ignitions and suppression). Measures to develop statistical models through resampling 
techniques improve model stability and overcome some limitations of modeling relatively rare 
events (i.e., large imbalance between events and non-events). 
 

● Modeling does not account for all factors that contribute to Very Large Fires. 
 
Our models incorporate predictors with strong spatial and temporal autocorrelation inherent in 
atmospheric factors but ignore ignition sources. Hence, these models should not be expected to 
predict the exact location and timing of VLFs, but rather local-to-regional variations in the 
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probability of VLF occurrence. Model development at finer spatial scales suffers from limited 
sample sizes of VLFs and lack of ignition sources. However, finer scale analysis that includes 
both top-down variables, as considered here, and bottom-up variables including fuel types, 
human factors (e.g., population density, road networks) and land management units may help 
elucidate additional spatial detail. Furthermore, fire growth and the development of VLFs may 
also be a function of widespread fire activity that curtails suppression resources. Finally, changes 
in ignition patterns and frequency resulting from changing distribution of lightning and human 
factors may contribute to VLFs in ways other than modeled here. 
 
 
 

PROJECTING FUTURE MEGAFIRES 
 
 

● A significant increase in Very Large Fire potential is projected under future mid-
century climatic conditions. 

 
Historical climate experiments that used downscaled climate for 1971-2000 from global climate 
model output simulate a general pattern and magnitude of VLF activity across the US as in the 
observed record. It is unreasonable to expect a perfect match between modeled historical climate 
and observed climate and their impacts on VLFs as fire ignitions are semi-random in nature and 
climate simulations are not designed to mirror decadal to interannual variations in observations.  
However, the model results are encouraging. 
 
Significant changes in VLF potential are simulated between future climate experiments run for 
the mid-21st century using a business-as-usual emission scenario (RCP8.5) and historical climate 
experiments at the ecoregions level III level (Figures 10 and 11) and at the Predictive Service 
Areas (PSA) level (Figures 12 and 13). Projected changes in climate are simulated by 17 CMIP5 
models that were statistically downscaled across the contiguous United States. The models 
simulate strong warming and, for much of the region, increases in fire danger (e.g., ERC) during 
the core fire season (Figures 11 and 13). As these variables were selected as predictors in many 
ecoregions, models run with future climatic conditions simulate a large increase in VLF 
probability. 
 
Geographic variability in changes in VLF potential were due to both the sensitivity of the model 
to individual climatic parameters and the specific climate change projections. The largest relative 
increases in VLF potential were found across the northern tier of the US, where the historical 
probabilities were low. Conversely, the largest absolute changes are projected for regions across 
the western US already prone to frequent VLF potential. For much of the western US, the models 
showed strong agreement of increases in VLF potential.  
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Figure 10. Multi-model mean annual number of VLF weeks per surface unit of 10,000 
square kilometers for historic climate experiment (top, 1971-2000) and mid-21st century 
climate experiment (bottom, 2041-2070) at the ecoregions (level III) level. Gray regions 
indicate regions with no or insufficient number of VLFs to build robust models. 
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Figure 11. Same as previous figure but at the monthly scale. 
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Figure 12. Multi-model mean annual number of VLF weeks per 10,000 square kilometers for 
historic climate experiment (top, 1971-2000) and mid-21st century climate experiment 
(bottom, 2041-2070) at the Predictive Service Areas (PSA) level. Gray regions indicate 
regions with no or insufficient number of VLFs to build robust models. 
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Figure 13. Same as previous figure but at the monthly scale. 
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• The seasonal window of Very Large Fires is projected to lengthen across many 
regions of the US. 

 
In many regions there is a substantial advancement in the seasonal onset of VLF potential that 
will ultimately result in an extension of the VLF season. Unlike the much earlier onset of VLF 
season in the spring, the models do not project any substantial change in the end of the VLF 
season in the SW United States associated with the arrival of monsoonal precipitation. Similarly, 
changes in the seasonality of VLFs are projected for the Everglades (Figure 14). 
 

 

 
Figure 14. Mean seasonal cycle of VLF potential (P) aggregated to level II ecoregions from 
1971-2000 (gray) and 2041-2070 (red). P is expressed as the mean number of VLF expected 
per surface unit (10^4 km^2) per week. Individual models are shown by dashed curves while 
the solid bold lines indicate the multi-model mean. Gray and red envelopes indicate the 90% 
inter-model spread. The insert within each panel indicates the location of ecoregions. Notice 
that the last panel d) Everglades shows VLF P from July to June. 



 

 -33- 

 
● While the magnitude of future mid-century projected change in Very Large Fire 

potential varies from model to model and scenario to scenario, there is strong 
agreement of increased Very Large Fire potential for much of the US. 

 
Substantial inter-model spread in projected changes in mean annual P and weeks of extreme 
probabilities (conducive to VLFs) are evident; however, nearly all model projections suggest 
increases above historical level. For example, all models showed an increase in VLF potential in 
the western Cordillera ecoregion from the baseline historical runs. However, the magnitude of 
increase projected varies across the GCMs for this ecoregion from an increase of 20% to an 
increase of more than 400%. 
 
 
 

CALCULATING SMOKE IMPACTS 
 
In order to rank potential future very large fire locations on their ability to affect various 
sensitive receptors – including human populations – we combined two factors: (a) a measure of 
the typical wildfire emissions emitted per acre at that location (see Appendix H); and (b) the 
ability of the atmosphere to transport the emissions to the sensitive receptor locations (see 
Appendix I, J). In addition, for select locations we examined the simple trajectory results against 
a more intensive full dispersion model (Appendix K). These calculations are described in detail 
in the Appendices and were done by climatological week. Results are summarized by 
climatological month and annually. 
 
Figure 15 presents the annual mean Smoke Impact Potential (SIP) for human populations, Class 
1 areas, and PM2.5 and Ozone non-attainment areas. These maps show the ability for the 
location shown to impact a specific type of sensitive receptor. As such the value indicated is the 
SIP for an emissions source at that location (and not the potential for impact at that location).   
 
It is important to note that the SIP is derived on a climatological basis. The transfer functions that 
relate source and receptor locations (see Appendix I) are not designed to be indicative of where 
the smoke from a specific fire at a specific time is likely to impact. Instead they are a statistical 
representation of where, based on past atmospheric transport patterns, it might impact. Thus SIP 
is only useful in understanding the overall potential for impacts, not in predicting specific 
impacts.  
 
Human population locations are based on the 2010 census data. Here the SIP is weighted to 
include the number of people that are within the smoke transport area (see Appendix J). The 
SIP:Haze version is based on the ability to reach visibility protected Class 1 areas. The 
SIP:NAAQSPM2.5 and SIP:NAAQSO3 versions are based on the ability to reach areas that are 
currently identified as non-attainment under the National Ambient Air Quality Standards for 
either PM2.5 or Ozone.   
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• Smoke Impact Potential is highest along the West coast and across the Midwest. 
 
Because of the direct dependence of SIP on the location of population centers, along with the 
generally west-to-east climatological wind direction, SIP is focused along the West coast (where 
smoke can still affect the large population centers of California, Washington, and Oregon) as 
well as across major portions of the Midwest including the Ozarks and Appalachians (where 
smoke can affect significant portions of the eastern seaboard depending on wind direction).   
Additionally there are high SIP areas west of Denver, and in the upper Minnesota and North 
Carolina regions (where deep organics can result in high emissions). 

 

  

Figure 15. Relative annual Smoke Impact Potential maps with rankings. Upper left: based 
on population (SIP); lower left: based on Class 1 areas (SIP:Class 1); upper right: based on 
PM2.5 non-attainment areas (SIP:PM2.5); lower right: based on Ozone non-attainment 
areas (SIP:O3). Each map is relative to the maximum value for any cell within that map. See 
text for discussion. 
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• Smoke Impact Potential for Class 1 areas and PM2.5 and Ozone non-attainment 
areas show very different patterns.   

 
The specific geographic locations of these sensitive receptors result in very different patterns of 
SIP. Specifically the SIP:Haze patterns are heavily weighted to the northwest – essentially 
upstream of the locations of the Class 1 area locations. The SIP:NAAQS patterns for both PM2.5 
and Ozone are somewhat similar, but with specific locational shifts based on the differences in 
where the non-attainment regions occur. 

 

 

4. MANAGEMENT IMPLICATIONS 
 
The results of this work have several implications for fire and land management planning.   
While these are questions of policy and must be balanced against many factors, the information 
and results found here have the potential to be useful in helping identify the relative future fire 
risk of very large wildfires, absent any other management activities. Knowing this risk may 
allow managers to help prioritize decisions on various mitigation strategies from prescribed 
burning treatments to road maintenance for fire suppression access. This type of information is 
also available from other studies (see Appendix G), and combining the results found here with 
those from other studies using different methods will give managers a better sense of the 
underlying uncertainties in these types of projections, and where disparate methods agree, greater 
confidence in these results.   

Additionally, this study is the first to link the risk of very large fires to the potential for smoke 
impacts to population centers as well as to PM2.5 and Ozone exceedences. The resulting 
rankings can help identify those areas of particular concern from a smoke exposure perspective.  
Knowing this has the potential to help managers prioritize management actions to mitigate 
wildfire risk based on the perspective of reducing overall smoke impact risk either regionally or 
nationally.  

Finally, the climatological maps of SIP may have utility for fire management today. Standing 
alone, these SIP maps are based on historical weather patterns and are not inherently coupled to 
any future climate projections. They can provide a near-instant assessment of the potential for 
regional smoke impacts, and could easily be converted into a simple assessment tool of utility for 
regional area commands or GACCs that want to have a simple system to rank fires based on 
smoke impact potential. 
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5.  NEXT STEPS 
 
There are many potential next steps that can improve upon the specific models and tools used 
here.  These include: 
 

• Developing a community-wide accepted definition of megafire 
• Improving the fire-climate-weather statistical models used to project megafire 

probabilities 
• Specifically examining the likelihood of a large growth day including fire weather 

connections more directly (this would have to be only on a case study basis due to 
observational limitations) 

• Performing additional analysis on the role of management decisions in the development 
of megafires, and 

• Incorporating these megafire predictions as scenarios in future projections of the full 
chemistry air model. 

 
In addition to the statistical methodologies used here, we believe that it is useful to examine both 
the current and future occurrence of very large growth days that seem to be inherent in the ability 
of fires to become megafires, and in looking at extreme-value theory as an alternative to 
logistical regression modeling. Both of these efforts are underway as follow-ons to the work 
presented here. 

 
 

6. DELIVERABLES 
 
Table 1 presents a crosswalk between the proposed and completed deliverables for this project.  
This project, in part due to extra work involved in creating the various statistical relationships 
modeling very large fires, has resulted in significantly more journal papers and conference 
presentations than originally proposed. Training to management groups, however, is incomplete 
but is being incorporated into standard trainings and lectures to user groups given by the U.S. 
Forest Service AirFire Team. In addition, there is an effort to do a webinar through the 
Northwest Knowledge Consortium. 
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Table 1. Deliverables Crosswalk 
 

Type Description Notes Status 
Datasets 5 datasets proposed covering 

fire-weather connections to 
smoke impacts; now complete; 
1 modified as below. 

Note:  back trajectory dataset 
now smoke transfer functions 
based on forward trajectories. 

Complete 

Conference 
Presentations 

2 conference presentations 
proposed. 

11+  conference presentations 
completed (both oral and 
posters);  more expected. 

Complete + 
9 extra 

Journal 
articles 

2 journal articles proposed. 8 journal articles published so 
far.  Additional manuscripts in 
progress. 

Complete + 
6 extra 

Training 3 Training Sessions proposed, 
primarily to smoke groups.  

Some training has occurred;  
additional training currently 
scheduled. Delayed due to 
difficulties completing project. 

Scheduled 

Non-refereed 
publication 

Annual progress reports to the 
JFSP 

 Complete 

Non-refereed 
publication 

Final Report to the JFSP  Complete 

 
 

DATASETS 
 
Datasets on very large fire probabilities, emission potential, smoke impact potential were created 
for this project. All data are available online or by contacting the authors and the metadata are 
being archived in the U.S. Forest Service Data Archive. See Section 2 for further discussion. 
 
   

PH.D. THESIS 
 
This work also has resulted in a Ph.D. thesis: 
 

• Stavros, E.N. 2013. Very large wildfires in the western contiguous United States:  
probabilistic models for historical and future conditions. University of Washington, 
Seattle, Washington. 126pp. 

 
A Master’s thesis (H. Podschwit, University of Washington) is currently in progress, based on 
this work.  
 

EXTENDED ABSTRACTS 
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• Stavros E.N., Abatzolglou J., Tane Z., Kane V., Veraverbeke S, McGaughey B., Lutz J., 
Larkin N.K., McKenzie D., Steel E.A., Ramierz C., Boland J., Schimel D. 2014. 
Regional likelihood of very large wildfires over the 21st century across the western 
United States: motivation to study explicit events like the Rim Fire, a unique 
opportunity with unprecedented remote sensing data.  IAWF Proceedings   

 
 

CONFERENCE PRESENTATIONS 
 
This is a partial list of oral presentations given as part of this project: 
 

• Stavros E.N., McKenzie D., Larkin N.K., Strand T. October 2011. A stochastic 
simulation model, Fire-Scenario Builder, to predict daily fire events at regional 
scales. Ninth Symposium on Fire and Forest Meteorology. Palm Springs, California; 
oral, presented by Stavros. 

• Abatzoglou J.T., Stavros E.N., Larkin N.K., McKenzie D., Steel A. December 2012. A 
new age of megafires? The role of climate in megafires in the western United States. 
5th International Fire Ecology and Management Congress, Portland, Oregon; oral, 
presented by Abatzoglou. 

• Stavros E.N., Abatzoglou J., Larkin N.K., McKenzie D., Steel E.A. April 2013. 
Megafires: fuel conditions and climate that drive extreme wildfire events in the 
Western United States. Annual Meeting of International Association of Landscape 
Ecology (IALE) Conference, Austin, Texas; oral, presented by Stavros. 

• Abatzoglou J.T, R. Barbero, S. Larkin, D. McKenzie, E.A. Steel, D. Bachelet, T. 
Sheehan. 2014. Will climate change increase the occurrence of very large fires in the 
Northwestern United-States? 5th Annual Pacific Northwest Climate Science 
Conference, Seattle, USA, 9-10 September 2014, oral, presented by Abatzoglou. 

• Podschwit H., Barbero R., Steel E.A., Larkin N.K. December 2014. Building a model to 
predict megafires using the bagged trees statistical approach. American Geophysical 
Union Fall Meeting, San Francisco, California; oral, presented by Podschwit. 

• Barbero R., J. Abatzoglou, C. Kolden, N.K. Larkin. 2013. The recipe for megafires in 
Eastern US: the role of the temporal scales. 10th Symposium on Fire and Forest 
Meterology, Kentucky, USA, 15-17 October 2013. 

• Raffuse S.M., Larkin S., Huang S., Drury S.A., and Lorentz K.A. 2015. Megafires and 
smoke exposure under future climate scenarios in the contiguous U.S. Presented at 
the 11th Symposium on Fire and Forest Meteorology, Minneapolis, MN. 

 
This is a partial list of posters presented as part of this project: 
 

• Stavros E.N., Abatzoglou J., Larkin N.K., McKenzie D., Steel E.A. December 2012. 
Assessing accuracy of a probabilistic model for very large fire in the Rocky 
Mountains: a High Park Fire case study. Mountain and Climate Research Conference, 
Estes Park, Colorado; poster, presented by Stavros. 

• Stavros E.N., Abatzoglou J., Larkin N.K., McKenzie D., Steel E.A. December 2012. 
Assessing accuracy of a probabilistic model for very large fire in the Rocky 
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Mountains: a High Park Fire case study. American Geophysical Union Fall Union, 
San Francisco, California; poster, presented by Stavros. 

• Abatzoglou J., R. Barbero, B. Stocks, C. Kolden,  M. Wotton, S. Larkin. 2014. 
Atmospheric drivers of daily variations in fire growth of very large wildfires. Large 
Wildland Fires, Montana, Missoula, USA, 19-23 May 2014; presented by Barbero. 

• Barbero R., J. Abatzoglou, C. Kolden. 2014. Modeling very large-fire occurrences over 
the continental United States from weather and climate forcing. Large Wildland Fires, 
Montana, Missoula, USA, 19-23 May 2014; presented by Barbero. 

• Barbero R., J. Abatzoglou, C. Kolden, N.J. Nauslar. 2012. An objective examination of 
Santa Ana winds events and wildfires in Southern California. 5th International Fire 
Ecology and Management Congress, Portland, USA, 3-7 December 2012; presented 
by Barbero 

• Huang S., Larkin N.K., Raffuse S.M., Lorentz K.A., Drury S.A., and Craig K.J. 2014. 
Megafires and smoke exposure under future climate scenarios in the contiguous 
United States. AGU Fall Meeting, San Francisco, CA, December 15-19; poster 
presented by Sonoma Technology, Inc., Petaluma, CA. 

 
 

JOURNAL ARTICLES 
 
The journal articles published to date from this project are: 
 

• Abatzoglou. J.T., R. Barbero, N.J. Nauslar. 2013. Diagnosing Santa Ana winds in 
Southern California with synoptic-scale analysis. Weather and Forecasting, 28, 704-
710. 

• Abatzoglou J.T. and Kolden C.A. 2013. Relationships between climate and macroscale 
area burned in the western United States. International Journal of Wildland Fire, 22, 
1003–1020, doi: 10.1071/WF13019.  

• Barbero R., Abatzoglou J.T., Kolden C.A., Hegewisch K.C., Larkin N.K., and Podschwit 
H. 2014(a). Multi-scalar influence of weather and climate on very large-fires in the 
Eastern United States. International Journal of Climatology, doi: 10.1002/joc.4090.  

• Barbero R., Abatzoglou J.T., Steel E.A., and Larkin N.K. 2014(b). Modeling very large-
fire occurrences over the continental United States from weather and climate forcing. 
Environmental Research Letters, 9, doi: 10.1088/1748-9326/9/12/124009.  

• Barbero, R., Abatzoglou, J.T., Larkin, N.K., Kolden, C.A., and Stocks, B. 2015.  Climate 
change presents increased potential for very large fires in the contiguous United 
States. Int. J. Wildland Fire DOI 10.1071/WF15083. 

• Stavros E.N., McKenzie D., and Larkin N.  (2014a).  The climate-wildfire-air quality 
system: interactions and feedbacks across spatial and temporal scales. Wiley 
Interdisciplinary Reviews: Climate Change, 5(6), 719-733.  doi:10.1002/wcc.303 

• Stavros E.N., Abatzoglou J., Larkin N.K., McKenzie D., and Steel E.A. 2014. Climate 
and very large wildland fires in the contiguous western USA. International Journal of 
Wildland Fire, 23, 899-914, doi: 10.1071/WF13169.  
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• Stavros, E.N., J. Abatzoglou, D. McKenzie, and N. K. Larkin. 2014. Regional projections 
of the likelihood of very large wildland fires under a changing climate in the 
contiguous Western United States. Climatic Change 126:455-468. 

 
Links to all of these papers are available on the JFSP page for this project. The list does not 
include a journal article on the smoke impacts and ranking expected to be published in 2016.  
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APPENDIX A:   
DEFINING MEGAFIRES 

 

Ruminations on the difficulty of defining “megafires” 
 

The term “megafire” has been used increasingly over the past decade, primarily in the 
United States, but also in other countries, to generally describe more frequently occurring 
large, high-impact wildland fires. However, a definition of a “megafire” that includes 
agreed-upon characteristics, has yet to be crafted by the wildland fire management 
community. In fact, a universally acceptable definition is likely not possible. 
 
The “megafire” debate has been driven by the argument that the number and intensity of 
wildland fires is increasing, and that impacts are growing alarmingly. There is a 
consensus that a combination of climate change-driven droughts and lengthening fire 
seasons, an over-accumulation of fuels in fire-dependent ecosystems due to effective 
suppression in recent decades, and the rapid expansion of high-value wildland-urban 
interface areas is responsible for increasing fire impacts.  Wildfire costs are increasing 
dramatically, but having little influence as fire and smoke impacts on life and property 
are becoming more frequent and extensive, and this trend can be expected to continue as 
climate change escalates. 
 
However, there is no consensus that a term such as “megafire” is required to address the 
changes underway in fire behavior and impacts.  Many argue that these wildfires are not 
fundamentally different than wildfires of the past, but that they represent a change in 
frequency and scale - occurring more often and at higher intensities, making control 
much more challenging.  Despite these disagreements on terminology, there is strong 
agreement that fire activity and impacts are increasing, and that a more effective land 
management model will be required to help mitigate this problem (Williams, 2013). 
 
Recent US fire statistics indicate that 95% of all fires are suppressed at initial attack, 
while another 4% escape initial attack and become extended attack operations, but are 
generally suppressed in a short period of time. The remaining 1% of wildfires are 
complex incidents that require the management and oversight of an organized Incident 
Management Team (IMT). Within this 1%, only a few fires become “megafires,” due to a 
combination of size, complexity and resistance to control (Brookings, 2005). 
 
Figure A-1 shows the number of large fires and their contribution to area burned post 
1984, using data obtained from the Monitoring Trends in Burn Severity (MTBS) 
database. The number of large fires has increased substantially over this period, 
accounting for a disproportionately high percentage of total suppression costs, private 
property losses, resource damages, and area burned. 
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Figure A-1. Annual burned area for the contiguous United States from MTBS fires from 
1984-2010 for all fires, VLF exceeding 12,500 and 50,000 acres. The red and blue lines show 
the percentage of annual burned area in VLF exceeding 12,500 acres and 50,000 acres, 
respectively. 
 
In this analysis we refer to these high-impact “megafires” as Very Large Fires (VLFs) 
and restrict our analysis of fires above a particular threshold acres in size. As mentioned, 
fire size is not the only criteria in measuring fire impacts, but it was felt that fire size is 
easier to relate to fire weather and danger than other fire metrics such as costs, 
suppression effort and infrastructure impacts. At various stages of the project we used 
both > 50,000 acres and > 12,500 acres in our analyses (see sections below for specific 
details). 
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APPENDIX B:   
BEHAVIOR AND IMPACT OF SELECTED 

‘MEGAFIRES’ 
 

A case-study examination of ‘Megafire’ commonalities and differences 

 
In order to better understand why the number and impact of VLF in the United States has 
been growing rapidly in recent years, it was felt that a closer examination of a number of 
major fires larger than 50,000 acres would be informative, and may identify some of the 
reasons why particular fires grow larger than others that escape initial attack. Fire size is 
not the only measure of fire impacts; overall costs, community destruction, infrastructure 
loss, environmental degradation, suppression air quality, and human health concerns are 
also important. However, fire size is a more easily-quantified impact that can be related 
directly to fire weather and fire danger conditions. These relationships could then be used 
with projected future climates to predict future fire impacts. 
 
A total of 21 recent (2002-2013) VLFs were selected for a detailed analysis of fire 
growth, with 20 of these fires occurring in the western contiguous United States 
(CONUS) and the remaining fire in Minnesota. All of these fires were well-known major 
events with significant impacts and media attention that created awareness that large fire 
activity was increasing, particularly in the western US. These fires are listed in Table B-1, 
along with various fire characteristics such as date, cause, location, fuels, duration, final 
size, and total suppression expenditures. They occurred in a variety of forested, rangeland 
and chaparral ecosystems, and ranged from very high-impact wildland-urban interface 
fires to wilderness fires. Some fires were of short duration, while others grew steadily 
over extended periods. Burning periods (the number of days from ignition to when a fire 
reached 98% of the final fire size) ranged from 4 to 55 days. All fires were large (>50,000 
acres), with final sizes ranging from ~92,000 to over 500,000 acres. Suppression costs for 
these fires also varied highly, from a low of $4.5 million to a high of $200 million (2014 
US dollars, adjusted for inflation). Collectively, total suppression costs for these fires 
amounted to over $1.3 billion. 
  
Daily fire growth information for each fire was obtained from the historical archive of 
incident status summary (SIT-209) reports http://fam.nwcg.gov/fam-
web/hist_209/report_list_209 grouped by Geographic Area Coordination Centers 
(GACCs). Cumulative daily fire growth for these fires is summarized in Figure B-1.   
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Table B-1. Summary information for 21 VLFs. Burning days = ignition date to date of 98% of final area burned; Cause = lightning 
(L) or human (H); Cost = suppression costs in thousands of dollars, adjusted for inflation to 2014. 

 
Fire State Year Start 

date 
Size 
(ac) 

Burning 
Days 

Cause Major 
Fuels 

Cost 
(1,000s) 

Cost/ 
acre  

Fatali
ties 

Struct
-ures 
lost 

Ash Creek MT 2012 25-Jun 249,562 12 L timber, 
grass 

$7,733 $31 0 39 

Basin 
Complex 

CA 2008 23-Jun 162,818 34 L chaparral, 
timber 

$85,870 $527 0 58 

Biscuit OR 2002 13-Jul 499,000 40 L mixed 
conifer, 

brush 

$200,887 $403 0 13 

Cedar CA 2003 25-Oct 280,278 6 H chaparral, 
brush 

$41,964 $150 15 2,820 

Day CA 2006 4-Sep 162,700 26 H chaparral $91,594 $563 0 11 

Hayman CO 2002 8-Jun 138,114 10 H mixed 
conifer 

$51,584 $373 0 618 

Las Conchas NM 2011 26-Jun 156,593 21 H mixed 
conifer, 
juniper 

$50,922 $325 0 112 

Long Butte ID 2010 21-Aug 306,113 4 L brush, 
grass 

$4,587 $15 0 12 

Milford Flat UT 2007 6-Jul 363,052 7 L brush, 
grass 

$5,763 $16 0 2 

Miller 
Homestead 

OR 2012 8-Jul 160,853 8 L brush, 
grass 

$6,187 $38 0 3 

Mustang 
Complex 

ID 2012 30-Jul 341,448 55 L timber $39,515 $116 0 7 

Pagami Creek MN 2011 18-Aug 92,682 29 L timber $23,891 $258 0 2 

Rim CA 2013 17-Aug 257,000 22 H brush, 
oak/pine 

$129,416 $504 0 112 

Rodeo-
Chediski 

AZ 2002 18-Jun 468,638 13 H chaparral, 
pine, 

juniper 

$19,963 $43 0 423 

Rush CA 2012 12-Aug 315,567 10 L grass, 
brush 

$50,254 $159 0 1 
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Station  CA 2009 26-Aug 160,557 14 H chaparral $105,393 $656 2 209 

Tripod 
Complex 

WA 2006 24-Jul 175,184 49 L timber $97,319 $556 0 2 

Wallow AZ 2011 29-May 538,049 24 H timber, 
grass 

$114,717 $213 0 72 

West Fork 
Complex 

CO 2013 5-Jun 109,615 25 L timber $31,768 $290 0 1 

Witch Creek CA 2007 21-Oct 197,990 4 H grass, 
brush 

$20,552 $104 2 1,634 

Zaca CA 2007 4-Jul 240,207 52 H chaparral $139,561 $581 0 1 
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Figure B-1. Daily cumulative growth (as a proportion of final fire size) for 21 VLFs. 

 
 
The fires shown in Figure B-1 fall into two distinct groups: a larger group of those that grew very 
quickly in the first week and the remainder that grew more slowly, while still presenting control 
difficulties. In general, the faster-burning and shorter-lived fires burned in lighter fuels (e.g., 
brush, grass), while the longer-burning fires were usually in timber. The longest-burning fires 
also tended to be in more remote regions, although several of the relatively short fires were also 
in more remote areas (particularly the Great Basin).  
 
Using a larger sample of daily fire growth derived from the SmartFirev2 data that included all 
MTBS fires from 2003-2010, we found that fires whose total burned area exceeded 20,000 (20k) 
acres generally burned over a longer duration than fires that burned less than 20k acres. The 
median duration, herein defined as the number of days from discovery to when at least 95% of 
the total burned area occurred, was 15.7 days for fires > 20k acres, and 3.3 days for fires < 20k 
acres. Moreover, half of all very large fires (>20k acres) burned 50% and 90% of the final 
burned area within 4 and 14 days post discovery, respectively. This compared to half of all other 
MTBS fires (<20k acres) that burn a 50% and 90% of the burned area on the date of discovery 
and within 5 days post discovery, respectively.  
  
We analyzed daily growth as a function of fire weather and fire danger conditions, particularly 
during the early phases of fires after they escape initial attack and begin to grow large, as this is a 
critical tipping point in terms of early and effective control. There are many other factors that 
could affect growth during this critical period, including fuels, topography, accessibility, 
resource availability, local to regional to national fire load etc., but this analysis is constrained to 
fire danger conditions. 
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Daily fire growth information from SIT-209 reports was compiled for the duration of each fire.  
These summary reports are generally issued in the evening and capture fire growth during the 
peak afternoon burning period. Fire weather and fire danger data from nearby weather stations 
was obtained from the Fire Family Plus website  
http://fam.nwcg.gov/fam-web/weatherfirecd/. Modeled fire weather/danger data were also 
obtained from the gridded surface meteorological dataset of Abatzoglou (2013). We extracted 
data for the 4-km voxel closest to each the fire centroid, assuming that meteorological conditions 
were temporally common across the fire perimeter. 
 
Fire danger variables from both the United States National Fire Danger Rating System 
(Bradshaw et al., 1983) and the Canadian Forest Fire Weather Index (FWI) System (Van 
Wagner, 1987) were compared with daily fire growth. These included the Energy Release 
Component (ERC) and Burning Index (BI) from the US system using fuel model G and the Fire 
Weather Index (FWI) and the Initial Spread Index (ISI) from the Canadian system.  These 
indices were selected as the best indicators of fire spread and intensity, thereby being most likely 
to reflect fire behavior levels that would challenge initial attack success and relate well with fire 
growth. 
 
Initial results, relating daily growth rates and fire danger over the active burning period for each 
fire and collectively, did not show any strong correlation. Since daily growth rates would be 
affected to some degree by suppression efforts, even under significant fire danger conditions, and 
this would be most prevalent during the latter stages of a large fire, a further analysis was 
conducted using data from the period during which the fire grew to half of its final size. This 
would be a period when suppression efforts would be less effective, with the fire spreading more 
naturally, although other factors (e.g., fuel type and continuity, topography etc.) would still exert 
an influence. This generally improved correlations somewhat, but they were still not significant.  
This is not completely surprising as daily growth is not the same as spread rate, and is greatly 
affected by the length of existing fire perimeter. The first day of the fire was also excluded from 
this analysis, as the growing period on this day varies depending on the time of ignition. 
 
While no strong correlations between any of the indices and fire growth were evident, all fires in 
Table B-1 burned under extreme fire danger conditions (above 95% levels for ERC, BI, FWI and 
ISI) that were sustained throughout much of the fire period, indicating that effective fire control 
would be challenging. These fires all grew substantially on the day of ignition and escaped initial 
attack, making further substantial growth on subsequent days possible. As typical examples, fire 
danger levels on the Wallow and Rodeo-Chedeski fires are shown in Figures B-2 and B-3.  ERC 
FWI, BI and ISI values are all well above normal both before and during these fires.  This was 
generally true on all of the selected 21 fires in this analysis. 
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Figure B-2. Observed daily fire danger indices Energy Release Component (ERC, fuel model 
G), Burning Index (BI), Fire Weather Index (FWI) and Initial Spread Index (ISI) calculated from 
4-km gridded weather data at the fire centroid for the Rodeo-Chedeski fire. The Palmer Drought 
Severity Index (PDSI) for the month concurrent with the fire start date is shown below. The x-
axis represents the day of year. The dashed vertical line denotes the discovery date of the fire, 
and the two dashed horizontal lines show the 90th and 95th percentile values calculated using the 
entire period of record. For reference, the smooth black line shows the moving 21-day 
climatology calculated for the period of record. 
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Figure B-3. As in Figure B-2 but for the Wallow fire. 

 
Despite the fact that daily fire growth during the most active periods on these fires was not 
strongly correlated with fire danger, it is undoubtedly true that extreme fire danger conditions 
before and during these VLFs undoubtedly contributed to them escaping initial attack and 
subsequently growing large. This raises the question whether this is a more noticeable effect on 
the VLFs >50,000 acres in our study in comparison to smaller fires that also escape initial attack.  
To further address this question, we grouped fires from the MTBS database into three size 
classes (5000-20000 acres, 20000-50000 acres, and >50000 acres) and investigated the ERC, 
FWI and BI conditions under which they occurred. 
 
Significant differences in the behavior of fire danger indices following the discovery date were 
observed across fire size classes. Fires that burned between 5,000 and 20,000 acres generally 
occurred under less extreme fire danger conditions concurrent with the discovery date and well 
after the discovery date (Figure B-4). Relatively minor differences were noted between fires that 
burned between 20,000 and 50,000 acres and those that burned more than 50,000 acres beyond a 
week after the discovery date. Fire danger indices were significantly higher for the 5-7 days post 
discovery for fires that eventually burned 50,000 acres or more.  
 
However, when conducting a similar analysis at a regional-scale the results can be somewhat 
different.  For example, we found significant differences in ERC 3-5 weeks following discovery 
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dates for fires greater than 50,000 acres versus smaller fire size classes for a subregion of the 
Northern Rockies covering 4 Predictive Service Areas from the Idaho panhandle, northwestern 
Montana and Glacier National Park (Figure B-4). In these forested ecosystems, prolonged ERC 
values near the 95th percentile for a full month following fire discovery allow for active fire and 
may limit suppression. 
 
Daily and total fire suppression costs were also obtained from the SIT-209 forms and adjusted 
for inflation to 2014 equivalent based on adjustment factors from the Bureau of Labor Statistics 
Consumer Price Index calculator. These numbers represent only actual suppression costs, and do 
not include costs associated with fire-caused damages. Suppression costs are a function of 
multiple factors, and we normalized costs across fires through two approaches. We normalized 
cost by area burned, deriving a cost/acre value for each fire. While total suppression costs are 
often accumulated for much longer than the number of burning days due to long-term mop-up 
and rehabilitation efforts that extend well beyond the date of fire containment (Figure B-5), the 
latter dates (both containment date and final cost incursion date) are often less reliable in the 
records, and can be controlled by factors such as when the first snowfall occurs, effectively 
ending fire season. This difference is obvious in examining examples from the Rim Fire, where 
containment and the end of suppression cost accumulation were essentially concurrent due to a 
season-ending event, and the West Fork Complex, where suppression costs continued well 
beyond the primary burning period due to the fire being in complex wilderness terrain (Figure B-
6). Thus, the number of burning days was more consistent to calculate across fires. 
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Figure B-4. Top panels: Composite (left) daily ERC and (right) BI converted to local percentiles 
for all MTBS fires in CONUS that reached a final size of 5,000 to 20,000 acres (blue), 20-50,000 
acres (grey) and more than 50,000 acres (red). The shading denotes the 95% confidence interval 
of each composite assessed using bootstrap analysis. Bottom panels: Same as top, but for four 
predictive service areas in northern Idaho and western Montana (Southern Panhandle 
Idaho/Western Montana, North Central Idaho/Southwest Montana, Glacier National 
Park/Wilderness, and Northern Panhandle Idaho/Northwest Montana. 
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Figure B-5. Cumulative suppression costs in millions of dollars (adjusted for inflation) for 21 
VLFs by the number of days after fire ignition (Day 0).  
 
 
 
 

  
Figure B-6. Cumulative growth curves for the Rim Fire (left) and the West Fork Complex (right) 
showing the daily progression of fire growth in thousands of acres (blue lines) and the daily 
accumulation of fire suppression costs (red lines). Day 0 indicates ignition date. 
 
While longer fires and larger fires were generally associated with greater suppression costs 
(Figure B-7), these relationships were relatively weak. When we normalized costs per acre and 
per burning day, relationships improved slightly, but were still weak. However, in normalizing 
the fire costs by area and then visualizing this cost/acre against the number of burning days, 
patterns begin to emerge concerning fire costs (Figure B-8).  
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Figure B-7. Relationships between suppression costs (millions of dollars, adjusted for inflation) 
and both area burned (thousands of acres; top) and number of burning days to 98% of final fire 
size (bottom) for 21 VLFs. 
 
 

 
Figure B-8. Suppression costs per acre burned versus number of burning days for 21 VLFs. 
Fires in red box were relatively short duration fires outside of California (i.e., Ash Creek, Long 
Butte, Milford Flat, Miller Homestead, and Rodeo-Chediski). Blue box includes short duration 
fires in California (i.e., Cedar, Rush, Witch Creek) 
 
There are two clear distinctions in this visualization. First, the short duration and relatively low 
cost fires (8 total) were primarily burning in lighter, flashier fuels such as grass (or grass under a 
timber overstory) and shrubs, while the longer duration and higher cost fires were primarily 
burning in heavy shrubs and timber (13 total fires). Second, for both of these groups 
(shorter/lower cost vs. longer/higher cost), the fires in California were overwhelmingly more 
expensive to suppress than fires outside of California (Figure B-9). 
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Figure B-9. Map of 21 VLFs, where dot size represents suppression costs per acre burned per 
burning day. 
 
While some of the literature on fire expenditures argues that this is associated with the complex 
wildland urban interface (WUI) found across much of California, several of the California VLFs 
did not burn in areas with extensive WUI concerns. For example, both the Rush and Basin 
Complex fires occurred in more remote areas: the Rush Fire in the very northeastern corner of 
the state, and the Basin Complex in wilderness along the central coast south of Monterey. 
However, both of these fires still had higher suppression expenditures per acre than comparable 
fires not within California. This discrepancy points to a different approach to fire suppression in 
California versus outside the state, and is further illuminated by examining the two points on the 
cloud which occur at opposite ends of the expenditure spectrum: the Mustang Fire in Idaho, and 
the Station Fire in California. Despite its large size and long burning period, the Mustang Fire 
had relatively low suppression costs per acre burned. This was in part due to its location in a 
wilderness area in central Idaho that has a long history of utilizing prescribed natural fire, 
wildland fire use, and fire for resource benefits. The Mustang Fire was initially managed as such, 
and suppression efforts were only selectively applied as the eastern flank of the fire approached a 
major US highway and several small towns. The remainder of the fire was monitored but left 
largely unstaffed due to inaccessible terrain, safety concerns, and low probability of successful 
suppression.  
 
By contrast, the Station Fire was the most expensive VLF to suppress on a cost/acre basis. While 
the fire began in the Wildland-Urban Interface (WUI) on the edge of the Los Angeles basin, it 
ultimately moved into less-accessible terrain in the Angeles National Forest. Costs were driven 
by three primary factors: 1) an extensive use of aerial suppression resources because of the 
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political ramifications of being a high-visibility fire (the plume could be easily seen by millions 
of people around the LA basin); 2) a joint command with CALFIRE, resulting in extensive use 
of more expensive state and municipal fire suppression resources (as compared to US Forest 
Service resources); and 3) the use of more indirect attack tactics following two firefighter 
fatalities during the early part of the fire. While most large wildfires around the LA basin are 
associated with autumn Santa Ana wind events, the Station Fire did not occur under a high wind 
scenario and was predominantly driven by complex topography and heavy fuels.  
 
Overall, examining the daily SIT reports for costs of suppression, fire growth, number of 
personnel assigned to the fire, number of days as national fire priority for resources, and the type 
of incident management team assigned to manage the fire help to delineate the 21 VLFs 
examined in the case study into three key categories: wind-driven, remote fuel-driven, and WUI 
fuel-driven. Wind-driven fires are generally short-lived and associated with either Santa Ana 
events (in California) or other multi-day events characterized by winds >50 mph that carry the 
flaming front rapidly through grass or shrub fuels. These fires generally do not lack for 
suppression resources or effort to suppress; fire behavior is simply too extreme to successfully 
suppress until the wind dies down. They are the cheapest fires overall because of their very short 
duration, although California wind-driven fires are more resource-intensive, more expensive to 
suppress, and generally consume more structures than non-California wind-driven fires, which 
are more often in remote locations. Because their rapid expansion requires road closures and 
mass evacuations, and because they are often associated with a high rate of structure loss, these 
are high-impact VLFs. 
 
Fuel-driven fires in WUI areas are also characterized by high suppression costs, both due to the 
greater number of state and municipal fire engines that are assigned to structure protection and 
due to the more extensive aerial resource support associated with saving homes. These VLFs 
tend to be high impact due to structure threats and losses, and also due to the negative smoke and 
air quality impacts they have on urban and semi-urban areas. The climatological analysis shows 
that many of these fires occur under extreme or even record fire weather conditions. This 
combination of extreme weather and a WUI fuel mosaic can produce a high-impact VLF. 
 
Fuel-driven fires in more remote areas are primarily considered high-impact VLFs primarily 
based on size, although some of these fires are considered high impact because they consume 
high-value commercial timber or threaten the integrity of critical watersheds that feed urban 
water supplies. Remote fuel-driven VLFs tend to be characterized by several common 
denominators: 1) they are often difficult to access because many of them start in wilderness areas 
(making early containment nearly impossible when desired); 2) they exhibit extreme fire 
behavior associated with record drought and/or fire weather conditions; 3) they burn in fuels that 
are fundamentally altered from the historical state, such as high-density forests where fire has 
been repeatedly suppressed or extensive stands that have been killed by insect outbreaks; and 4) 
suppression efforts more commonly include a mix of indirect attack, large burnout operations, 
unstaffed segments of the fire, and fire for resource benefits in order to maximize firefighter 
safety, minimize suppression costs, and meet ecological restoration objectives. The Mustang 
Complex, Pagami Creek, and West Fork Complex fires were all initially managed for resource 
benefits; extensive suppression only began when the fires grew large enough outside the 
wilderness areas where they ignited to begin threatening residences and critical infrastructure 
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resources. The extended no-suppression burning period reduced overall suppression costs on 
these fires, particularly relative to the number of burning days, as evidenced in Figure B-5. In all 
three of these fires, they primarily required heavy suppression resources only for a short period 
of critical fire weather, keeping overall suppression costs low. 
 
In summary, a case study of 21 VLFs reveals that a variety of factors contribute to the high level 
of impact associated with these fires. While VLFs more broadly across the US have been 
characterized as the product of fire climatology and extreme fire weather conditions (i.e., 
physical drivers), the case study reveals that human factors also contribute to impacts and help 
determine what are considered VLFs. Whether fires occur in ever-expanding WUI areas or not is 
a factor for final suppression costs and potential for structure loss, and, if fires occur in 
California, they are likely to have higher suppression costs associated with the suppression 
hierarchies and comparatively heavy utilization of state, municipal, and aerial firefighting 
resources in that state. Past land management influences potential for VLFs, with past 
suppression and logging history altering historical fuel loading. VLFs that are managed for a 
complex outcome, such as a mix of suppression and non-containment for resource benefits, may 
still grow large in size, but the costs to suppress them are comparatively lower than fires of a 
similar size and duration that undergo full suppression. Ultimately, the diversity of both impacts 
and contributing factors suggests that VLFs will not be easy to predict in the future based solely 
on climate model outputs, but also that a size-based definition of VLFs will not capture the 
diversity of long-term benefits and consequences. 
 

Summary Points 
 

• The project analyzed 21 high-impact VLFs (>50000 acres) between 2002 and 2013. 
• There was a large variation in final sizes and suppression costs. 
• All fires escaped initial attack and grew quickly. 
• Growth rates varied between fires. 
• Fuels ranged from grass and brush to chaparral and forests. 
• Extreme fire danger conditions prevailed before and during all fires. 
• No strong correlation between daily fire growth and fire danger conditions, likely due to 

many other factors at play. 
• VLFs >50,000 acres in size appear to have burned over a longer period of extreme fire 

danger than smaller fires that also escaped initial attack. 
• Fire suppression costs, and the rate at which they accumulate, can be quite variable 

among fires. 
• Fires can be primarily grouped into three groups: wind-driven intensive, WUI fuel-

driven, and remote fuel-driven. 
• Size-based definition does not fully capture diversity of human and environmental factors 

contributing to VLFs. 
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APPENDIX C:  
SCALE AND STATISTICAL CONSIDERATIONS IN 
STUDYING VERY LARGE FIRE OCCURRENCES 

 

 

Wildfire is a complex phenomenon that can be examined from multiple perspectives and at a 
range of spatial and temporal scales. From a perspective of daily ecosystem dynamics, even the 
most ordinary fire is a rare event. Working with rare events poses special challenges for 
statistical models, which are most useful in characterizing the behavior of many events, 
organisms, or forces, rather than individual ones. 

A central question in statistical modeling of fire is therefore “how much should data be 

aggregated?” This plays out in both spatial and temporal dimensions. The answer is clearly 
dependent on the attributes of fire of most interest. For example, paleoecology fire activity is 
often quantified over decades or centuries from sediment charcoal records and no one would 
presume to identify either an individual fire or even the year of a fire (Whitlock et al., 2009). In 
contrast, observational fire records may track daily and even hourly fire progression precisely, 
though often retrospectively, such that the exact timing, the fire perimeter, and patterns of 
severity within the fire are known. An individual fire is just one event, however, and, therefore, 
only one realization of a stochastic process that is of limited use in estimating the attributes of 
future fires. An aggregate of individual fires is needed to develop the ability to forecast or project 
similar events. For example, statistical models of annual area burned (Flannigan et al., 2009, 
Littell et al., 2009) are a common parlance for characterizing regional fire activity, given a long 
enough temporal record (e.g., 30+ years) to be robust statistically. 

 

Large Wildfires are Rare Events 
 
VLFs are very rare events. We defined VLFa in the western contiguous US as those fires ≥ 
50,000 acres ~ 20,234 ha. By this definition, when fire activity was summarized by weeks, the 
Rocky Mountain Geographic Area Coordination Center (GACC) had only 3 weeks within which 
a VLF occurred out of 621 weeks available for analysis.   

We can reduce problems associated with rarity by working at very coarse resolutions, e.g., years 
(annual area burned) or the conterminous USA, but analyses at these coarse scales are generally 
not useful for understanding the mechanisms driving VLF occurrence. For example, climatic 
factors correlated with the probability of a VLF occur in advance of the fire itself. Periods of 
high precipitation may lead to increased vegetation growth that becomes wildland fire fuel one or 
even many years into the future (Littell et al., 2009). Drought may lead to increased wildland fire 
probabilities weeks or months later. Wind and low humidity coincident with the fire will affect 
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the odds of that fire growing from a small fire to a VLF.  If we move to finer spatial or temporal 
resolution, it becomes easier to untangle mechanisms, and predictions become more relevant.  
Issues with rarity offset the increased mechanistic understanding at these finer scales, limiting 
the feasibility of many standard statistical methods.   

 

Imbalanced Observations of Fire versus No Fire 
 
Logistic models are most robust with balanced data. For predicting the presence or absence of an 
observation (i.e., a VLF), equal numbers of 1’s (presence) and 0’s (absence) are ideal. Models 
with response variables that have more than an order of magnitude difference (e.g., ten zeros for 
every one) are especially fragile (He and Garcia, 2009). Rare events, such as VLFs, are typically 
unbalanced, and so we made compromises by extending the temporal window of megafire 
prediction (to weeks, see above) and the spatial domains to GACCs. The spatial resolution was 
later refined to a 60-km first using Level II ecoregions and then allowing for the spatial 
heterogeneity in predictors within an ecoregion. To maintain the concept of fires that are so large 
as to be currently rare events and also have enough observations to build reasonable models, we 
defined VLFs as 50,000 acres (20,234 ha), which was the largest size class for which we could 
build reasonable models. To understand the sensitivity of model selection and accuracy statistics 
to the presence of imbalanced data, we built an additional two models for each GACC using 
alternative definitions of megafire (4,407 ha and 10,117 ha).   

 

Tradeoffs Across Spatial and Temporal Scales of Analysis 
 
We considered a range of possibilities for structuring our analyses spatially. At the coarsest 
scale, we explored GACCs.  There are 8 GACCs within the western conterminous USA. Within 
GACCs, we could also work at the scale of Predictive Service Areas (PSAs). There are 
approximately 100 PSAs within the western conterminous USA. The advantage of working at 
the GACC or PSA scale is that wildfire management and planning take place within these 
boundaries. The US Environmental Protection Agency (EPA) has also divided the USA into 15 
“Level 1 Ecoregions” based on a framework developed by Omernik (1987). These are thought to 
be relatively homogeneous areas within which ecosystems (and the type, quality, and quantity of 
environmental resources) respond similarly to climate and disturbance (Bryce et al., 1999).  
Similarly, the conterminous USA has also been divided into 50 nested Level II ecoregions and 
182 nested Level III ecoregions. These ecoregions form a second potential set of analysis scales, 
which divide the conterminous USA into ecosystems that might have similar climatic and 
vegetation drivers of wildland fire. In the end, we chose to model VLFs at the spatial scales of 
the GACCs and also on a 60-km grid.   

The choice of temporal scale(s) for building models of VLFs is perhaps even more difficult, and 
involves four major challenges. First, although an intuitive way to classify time is the human 
calendar, seasonal climate does not adhere to it. For example, the beginning of the dry season in 
a particular region may be, on average, May 2nd, but in a given year, the beginning of the dry 
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season is unpredictable. Second, a fire season will not occur with annual regularity on the human 
calendar, and begins at different times in different ecoregions or other spatial delineations.  
Third, we are interested in predicting and understanding fire patterns at a fine temporal 
resolution, but this is precisely the resolution at which VLFs are rare events. Lastly, there are 
challenges with temporal congruence. Fires may begin before the recorded date of discovery, and 
climatic drivers of wildfire may occur years before a fire or even weeks after fires are initiated.  
For example, climate several weeks in advance of ignition could influence fire risk through 
reduced fuel moisture. Climate could also influence fire probability for days or even weeks after 
ignition via wind and lack of precipitation. Because daily resolution would have contributed to 
the imbalance in the data and is more subject to temporal autocorrelation, we aggregated the data 
by week and reduced each year to the core fire season. We included potential predictor variables 
summarized over several alternative time scales and lags, in order to identify the combination of 
predictor and timescale most highly correlated with the odds of VLFs. 
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APPENDIX D:  
STATISTICAL ANALYSIS OF MEGAFIRES  

AT THE REGIONAL SCALE 
 
 
This appendix provides some additional notes on the statistical analysis. For more information, 
please see the full journal articles detailing this work : 

 
• Stavros, E.N., J. Abatzoglou, D. McKenzie, and N. K. Larkin. 2014. Regional projections 

of the likelihood of very large wildland fires under a changing climate in the contiguous 
Western United States. Climatic Change 126:455-468. 

• Stavros, E.N., J. Abatzoglou, N. K. Larkin, D. McKenzie, and E.A. Steel. 2014. Climate 
and very large wildfire fires in the contiguous western USA. International Journal of 
Wildland Fire 23:899-914. 

 
We examined past associations between very large wildland fires (VLFs, 50,000 acres, or 20,234 
ha) in the western contiguous USA and climate. Climate-based variables known to be prognostic 
for fire danger were used as predictors over several temporal windows before and after fire starts. 
We then considered how predicted seasonal changes in the climatic potential for VLFs would 
affect our estimated probability of VLFs across the same area.   

We modeled past and future VLF probabilities across eight Geographic Area Coordination 
Centers (GACCs): Southern California (SCAL), Northern California (NCAL), Pacific Northwest 
(PNW), Northern Rockies (NROCK), Rocky Mountains (RM), Western Great Basin (WGB), 
Eastern Great Basin (EGB), and Southwest (SW). GACCs were defined by the U.S. National 
Interagency Fire Center (acquired 1 Oct 2011 
from http://psgeodata.fs.fed.us/download.html/GACC_2009.zip).   

 

Fire Data 
 
For fire area, we used fire perimeters from the Monitoring Trends in Burn Severity (MTBS) 
dataset produced by the U.S. Forest Service (http://www.mtbs.gov, data acquired 1 Oct 2012). 
As used, MTBS spans 1984-2010 and includes area-burned and burn-severity data within nearly 
6,000 individual large fire perimeters exceeding 405 ha across the western contiguous USA. 
Unburned islands (anything categorized as “unburned/unchanged” by MTBS) within the fire 
perimeter were not included in the burned area calculations to achieve a more accurate estimate 
of the total area burned (Kolden et al., 2012). 

We used past records of fire discovery date to define the core fire season within each GACC.  
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The core fire season was defined as the time window within which fires accounting for the 
middle 95% of the area burned were within each GACC in an average year over the record. Fires 
with discovery dates outside of the core fire season were excluded from the analysis. We 
classified each week of the core fire season in which at least one megafire was discovered as a 
“megafire week,” weeks where at least one large fire was discovered but no megafires as a “large 
fire week,” and weeks in which no large fires occurred as a “no fire week.” 

 

Climate Data and Derived Indices 
 
Two gridded climate datasets were considered: (1) monthly temperature and precipitation from 
Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly et al., 2008), and 
(2) daily surface meteorological data from Abatzoglou (2013). Multiple fire danger indices were 
also available. Palmer Drought Severity Index (PDSI), a measure of soil moisture, is calculated 
from the monthly climate data while fire danger indices of the National Fire Danger Rating 
System (NFDRS) and the Canadian Forest Fire Danger Rating System (CFFDRS) are calculated 
from the daily surface meteorological data. NFDRS calculations used fuel model G (dense 
conifer stand with heavy litter accumulation) to maintain consistency with previous studies 
(Andrews et al., 2003) and used greenup dates defined by the first day of each year when the 
normalized growing season index exceeds 0.5 (Jolly et al., 2005; M. Jolly, personal 
communication). 

We used six indices from the NFDRS and CFFDRS: (1) NFDRS 100-hour fuel moisture 
(FM100) represents the moisture content of dead fuels 1-3 inches in diameter or roughly the 
moisture content of ¾-4 inches of soil. Lower values of FM100 represent dryer conditions; (2) 
NFDRS 1000-hour fuel moisture (FM1000) represents moisture content of dead fuels 3-6 inches 
in diameter. Lower values of FM1000 represent dryer conditions; (3) NFDRS energy release 
component (ERC) represents how hot a fire could burn and is directly related to the daily 
potential worst-case scenario, total available energy per unit area within the flaming front at the 
head of a fire. Higher values represent higher fire danger; (4) NFDRS burning index (BI) 
represents the potential difficulty of fire control as a function of spread rate and ERC. Higher 
values represent higher fire danger; (5) CFFDRS fine fuel moisture content (FFMC) represents 
the relative ease of ignition and flammability of litter and other fine fuels. Higher values 
represent dryer conditions; (6) CFFDRS duff moisture code (DMC) represents average moisture 
content of loosely compacted organic layers of moderate soil depth. Higher values represent 
dryer conditions. 

 

Large Fire vs. Megafire Climatology  
 
A composite analysis was used to answer the following question: do antecedent and concurrent 
fuel conditions and climate differ for megafires than for other large wildfires and for weeks 
during the fire season without large fires? Composite analysis includes lead-lag temporal 
composites of (1) weekly fire danger index percentiles over a 13-week period centered on the 
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discovery week, and (2) monthly temperature and PDSI for the year prior to and concurrent to 
the discovery week. Temperature and PDSI were used to examine fire climatologies up to a year 
prior to discovery and to provide insight to longer-term lagged effects of climate. The composite 
analysis staggers climate and fire danger index percentiles (to aid comparisons between GACCs) 
relative to the discovery week of fires (when x-axis is zero) within each GACC. Due to 
challenges in temporal overlap of individual fires and inconsistencies in the reported discovery 
date of each fire, the analysis is aggregated to the discovery week of each fire (weeks are defined 
by day-of-year, e.g., week 1 = January 1-7). The 95% confidence intervals of the composite 
means are estimated using bootstrapping (N=1000). 

Probability of a Megafire Week 
 
We estimated logistic regression models for each GACC to estimate the probability of a megafire 
week, i.e., a week when at least one megafire occurred within a fire season. Potential predictor 
variables included climate and fire danger indices as described above and in section 3. The 
hypothesized mechanisms relating each potential predictor variable to megafire probability 
suggest a variety of potential time lags. For example, climate several weeks in advance of 
ignition could influence fire risk through reduced fuel moisture. Climate after ignition could also 
influence fire probability via wind and lack of precipitation. To allow for these time lags during 
the model building, we used the composite graphs to identify predictor variables at multiple time 
lags. Note that PDSI and temperature (TEMP) are monthly indices that were assigned to all days 
of the month. Furthermore, explanatory variables used in this analysis are raw values rather than 
the percentiles applied by managers for fire-danger ratings. Percentiles are tied strictly to the 
model database used to generate them, thus using them over-calibrates models to the dataset used 
to generate them.  

We applied the following model-selection procedure independently for each GACC. We built 
models by minimizing the Akaike Information Criterion (AIC), then removing insignificant 
(p>0.05) variables one at a time by backward elimination. Next, we examined the resultant 
models for any correlated predictors (Pearson’s correlation coefficient ≥0.8) or any predictors 
that were duplicated over time windows, retaining the earliest occurrence (e.g., if FFMC the 
week prior to discovery was used, no other FFMC variable from a later week was allowed). We 
confirmed that all predictor variables retained in the model still met the significance criteria 
(p<0.05). Analysis of predictor influence on the probability of a megafire week used standard 
odds ratios. 

We evaluated each model using a combination of precision, recall, and area under the receiver 
operating characteristic curve (AUC), which quantifies the trade-offs between true positives (TP; 
benefits) and false positives (FP; costs) (He and Garcia, 2009). An AUC of 0.5 indicates that the 
model predicts no better than random, whereas a value of 1.0 indicates that the model makes 
perfect predictions (Harrell, 2001). Precision is “a measure of exactness” returning the 

probability of correctly classifying a megafire while recall is “a measure of completeness” 
returning the probability of correctly classifying a megafire that is actually a megafire (He and 
Garcia, 2009). There is generally a trade-off between precision and recall. To calculate precision 
and recall, the model output–probability of a megafire week–was converted into binary 
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predictions of megafire week. We used a sliding classification criterion, in increments of 0.05, to 
translate model output into binary megafire predictions. For example, if one applies a 
classification criterion of p ≥ 0.5, then any modeled predictions greater than or equal to 0.5 
would be considered a prediction that a megafire would occur in that week. We evaluated model 
predictive accuracy across all thresholds, using AUC.  

 

Megafire Future Projections 
 
Climate data were used as predictors in VLF models defined per GACC, thereby projecting the 
probability that in a given week, a VLF will occur. The observed likelihood of VLF was 
compared to future projections using both time series of the proportional change in probabilities 
and Welch’s t-tests. For each Representative Concentration Pathway (RCP) ensemble from 1950 
to 2099 and for the observed ensemble 1979 to 2010, we used five-year moving averages, each 
divided by the mean of the observed record, to determine the proportional change in probability. 
Future proportional change projections for 2031-2060 were compared for individual General 
Circulation Models (GCMs) and the multi-model mean to the historical modeled (1950-2005) 
proportional change using Welch’s pairwise t-test assuming unequal variances. We chose 2031-
2060 to capture differences between a radiative forcing of 4.5 and 8.5 Wm-2.  Whereas the 
differences between RCP4.5 and RCP8.5 increase in the latter half of the 21st century, 
uncertainty associated with vegetation shifts and their feedback to fire climatology might change 
the climate-VLF associations used to build the models in this analysis. Nevertheless, time series 
were extended out to 2100 to capture the full potential difference qualitatively in probability of a 
VLF between RCP scenarios. 

Two other analyses included (1) a plot of VLF seasonality and (2) the spatial distribution of the 
change in climate space from the observed record to the future. First, we examined seasonality 
by both plotting the probability of a VLF by week of year (y-axis) against each year from 1979 
to 2010 (x-axis), and testing the difference, using Welch’s t-test, in mean seasonal start week, 
end week, and season duration as defined by exceeding the threshold for classifying a megafire 
which was determined using the probability threshold where precision and recall intersect. 
(These thresholds are 0.225 in EGB, 0.125 in NCAL, 0.275 in NROCK, 0.175 in PNW, 0.200 in 
RM, 0.125 in SCAL, 0.125 in SW, 0.225 in WGB). Second, we examined the spatial distribution 
in the change of climate space by plotting the change in all calculated indices across the domain 
from the baseline conditions (1979-2010) to the more conservative future RCP4.5 scenario for 
2031-2060. Regions where fewer than ten of the 14 models agree on the sign of change were 
excluded from the analysis. The change in frequency of extremes was examined using the 
percentage change in days or months (depending on the predictor variable) with extreme 
conditions. Extreme conditions are defined as exceeding the upper decile of the observed 
calculated index from 1979-2010 for ERC, BI, FFMC, DMC and Temperature. Because large 
fires have a proclivity for occurring during drought and low fuel moisture, the bottom decile was 
used for FM100, FM1000, and PDSI. 
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Summary Points 
 

• We built statistical models at the scale of GACCs of the probability of a megafire, 
with climate-based variables, including fire-danger indices, as predictors. 

• We estimated the probability of a “megafire week” with these models, as a 
compromise solution to achieve robust models of rare events (megafires). 

• We projected these models onto future climate space, using RCPs 4.5 and 8.5 and an 
ensemble of global climate models. 
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APPENDIX E:  
MODELING OF HISTORICAL VLF  

AT SUB-ECOREGION SCALES:  
METHODS AND CONSIDERATIONS 

 
 
The results of this work are summarized here.  For more information please see the full journal 
articles detailing this work : 

 
• Barbero R., J.T. Abatzoglou, E. A. Steel, N.K. Larkin. 2014. Modeling very large fire 

occurrences over the continental United States from weather and climate 
forcing. Environmental Research Letters, 9, doi:10.1088/1748-9326/9/12/124009 

 
Relationships between very large-fires and climate factors were examined at weekly time scales 
and for Omernik level II ecoregions a 60-km spatial resolution. These ecoregions reflect climate 
and vegetation zones with common climate-fire responses and provide a suitable number of very 
large-fires required to build stable models. However, variability in climate and fire regimes 
persists within an ecoregion that is overlooked by aggregating all fires and climate information to 
coarse scales. To account for this, we model intra-ecoregion variability at tractable scales that 
reflect the spatial extent of the variability of top-down controls of fires, by spatially aggregating 
ecoregion to ~60-km resolution. Ecoregions that experienced fewer than 5 VLF were removed as 
were pixels where a majority of land cover was non-burnable defined by the presence of 
agriculture and barren land cover types. 

  
The Monitoring Trends in Burn Severity (MTBS) database was used to obtain fire location, fire 
discovery date and burned area for large-fires over the contiguous U.S. from 1984-2010. Fires 
smaller than 404 ha were eliminated as was ‘unburned to low’ burned area for each fire as 
classified by MTBS. We define very large-fires (VLFs) as fires whose size exceeds the 90th 
percentile (5,073 ha) of MTBS fires greater than 404ha, resulting in a total of 927 fires across 
CONUS and 8343 large fires (LFs) that fell below VLF thresholds. Both VLFs and LFs were 
aggregated to ~60-km grid and 6-day time increment (hereafter we will use the term ‘week’ for 
simplicity) yielding a time series of 1647 weeks from 1984-2010 coded as 1 if at least one VLF 
was discovered within that week per voxel, and 0 otherwise. Modeling at the weekly timescale 
has the advantage of capturing intra-seasonal variability otherwise masked in longer timescales. 
However, this approach is not capable of capturing very short-term spread events. 

  
We considered a set of predictor variables intended to capture different timescales of variability 
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through which the atmosphere can influence VLF occurrences from synoptic to sub-seasonal to 
interannual scales. We only selected the most relevant predictors to limit model complexity as 
outlined in Table E-1. We computed the 30-day Effective Precipitation (EP) index (Byun and 
Wilhite, 1999) that sums rainfall over the previous 30 days with a daily weight decreasing in a 
non-linear fashion from the last day of the period considered. We used the Palmer Drought 
Severity Index (PDSI) given its widespread usage in climate-fire studies, and PDSI averaged 
over the previous May-Sep, as it has been linked to changes in biomass availability in fuel-
limited fire regimes. Four fire danger indices were also considered: Energy Release Component 
(ERC) and Burning Index (BI) from the National Fire Danger Rating System (Cohen and 
Deeming, 1985), Initial Spread Index (ISI) from the Canadian Forest Fire Danger Rating System 
(Van Wagner, 1987) and Fosberg Fire Weather Index (FFWI; Fosberg, 1978). Finally, to better 
account for vegetation distribution within ecoregions, annual climatologies of actual 
evapotranspiration (AET) and Climatic Water Deficit (CWD) were calculated following 
Dobrowski et al. (2013) as proxies of potential productivity and moisture stress. Also, previous 
studies (e.g., Balch et al., 2013) showed that fire activity was facilitated in the recent decades by 
the presence of invasive species such as cheatgrass (Bromus Tectorum) that invaded perennial 
shrublands in the cold deserts. As the seasonal timing of precipitation helps constrain the spatial 
distribution of cheatgrass extent (Bradley, 2009), we used the fraction of total annual 
precipitation in July-September as a proxy of cheatgrass locations. Note that these predictors are 
reasoned to model conditions conducive to VLF and not the exact location of VLF, since we did 
not include ignition sources. 

  
Table E-1. Predictor variabiles and their source and frequency. 

 

Very large-fire predictors Data Source Frequency 

Relative humidity (RH) Abatzoglou, 2013 Weekly 

Fosberg Fire Weather Index 
(FFWI) 

Abatzoglou, 2013 Weekly 

Initial Spread Index (ISI) Abatzoglou, 2013 Weekly 

Temperature (T) Abatzoglou, 2013 Weekly 

Wind speed (W) NARR Weekly 

Burning Index (BI) Abatzoglou, 2013 Weekly 

Energy Release Component 
(ERC) 

Abatzoglou, 2013 Weekly 

 Effective Precipitation (EP) Abatzoglou, 2013 Weekly 

Palmer Drought Severity Index 
(PDSI) 

PRISM Monthly 
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PDSI during the previous 
growing season 

PRISM Annual 

Actual Evapotranspiration (AET) Dobrowski et al., 
2013 

Climate Normal 

Climate Water Deficit (CWD) Dobrowski et al., 
2013 

Climate Normal 

Fraction of annual precipitation 
in Jul-Sep 

PRISM Climate Normal 

 
 
We developed Generalized Linear Models (GLM) using a stepwise selection procedure in order 
to simulate VLF probabilities for each ecoregion. To do so, we considered all 60-km pixels 
within each ecoregion for the period of record in our modeling and treated them as independent 
samples despite the inherent spatial autocorrelation and serial correlation. The binomial 
predictand y (VLF occurrence vs Non-VLF occurrence) is defined such that y=1 if a VLF 
occurred during that week and y=0 otherwise (non-VLF week). This binary response is modeled 
as the probability (P) of VLF week via a logistic model with a logit link. While a model may be 
developed using all data and variables through a logistic model, numerous caveats arise that limit 
model robustness, particularly given the imbalance of VLF weeks to non‐VLF weeks.  

Resampling methods were used to assess model stability. Standard resampling protocols may be 
unfeasible as the rarity of VLF weeks in some ecoregions may yield samples with a complete 
absence of VLFs. Instead, we used all VLF weeks and resampled with replacement from non-
VLF weeks drawn from the distribution of all voxels across time for each ecoregion. However, 
subsampling non-VLF weeks results in a bias in modelled probability. We corrected for this bias 
in VLF probabilities by including the fraction of non-VLF weeks randomly sampled compared to 
the number of non-VLF weeks in the population in the GLM.  

Predictor variables that did not exhibit significant relationships were discarded from stepwise 
model selection procedure. Also, we did not allow interactive and non-­linear terms in logistic 
equations. We used the Bayesian Information Criterion (BIC) to select predictors in the stepwise 
procedure that favors more parsimonious models. To select predictors in a robust fashion while 
limiting computation time and resources, we conducted 1000 Monte‐Carlo simulations for each 

ecoregion using a subset sample of non‐VLF weeks, yielding 1,000 different equations. We used 
the most frequent set of predictor variables from these simulations in subsequent modeling as we 
considered these to represent the most stable relationships.  

Models were cross‐validated and parameters estimated using a subset of observations that 

randomly resampled non‐VLF plus all VLF weeks. We excluded 25% of non‐VLF and VLF 
weeks for validation and used the remainder of the data to develop GLMs. We repeated this 
process 1,000 times and model performance was assessed by computing the Area Under the 
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Curve (AUC) between modeled probabilities and observations. The mean AUC across the 1,000 
simulations was used to assess model skill, and the variability across the iterations to assess 
model robustness. 
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APPENDIX F: 
PROJECTING MEGAFIRES INTO THE FUTURE 

 
 
 
The results of this work are summarized here.  For more information please see the full journal 
articles detailing this work : 

• Barbero, R., Abatzoglou, J.T., Larkin, N.K., Kolden, C.A., and Stocks, B.  2015.  Climate 
change presents increased potential for very large fires in the contiguous United States. 
Int. J. Wildland Fire DOI 10.1071/WF15083. 

 
Prior studies have reported increased burned area for parts of the US by the mid-21st century with 
anthropogenic climate change; however, such studies have been limited to the western US and 
did not provide insights on future VLF occurrence. We extended prior work by Stavros et al. (see 
Appendix D) by resolving projected changes in VLF that account for varying climate–fire 
relationships facilitated through common vegetation assemblages at the ecoregion scale. 
Additionally, using the modeling framework detailed in section in Appendix E, we were able to 
capture intra-ecoregional variability in VLF at spatial (~60-km grid) and temporal (weekly) 
scales that may be more relevant for informing management approaches to climate change than 
coarser scale approaches. This empirical modeling effort cannot account for other factors that 
influence VLF such as changes in vegetation, land management and ignitions. However, by 
isolating projected changes in atmospheric drivers of VLFs, we sought to identify geographic 
hotspots of changing VLF occurrences. This guidance in turn may be useful in devising climate 
adaptation strategies for ecosystems and communities. 

Climate projections were obtained from 17 global climate models (GCMs) using historical 
forcing experiments from 1971to 2000 and Representative Concentration Pathways 8.5 (RCP8.5) 
forcing experiments from 2041 to 2070. We calculated a set of predictors with established links 
to VLFs (see Appendix E). Whereas all surface meteorological data were bias corrected through 
downscaling, a secondary bias correction was performed on all derived variables (e.g., fire 
danger indices, drought metrics). This bias correction forces data for the historical modeled 
period (1971–2000) to match the statistical moments of the observed distribution, and applies the 
same transformation to the future modeled period (2041–2070) thereby preserving differences 
between the two modeled datasets. 

We projected VLF probability using downscaled GCM data at a 4-km horizontal resolution 
aggregated to the aforementioned spatiotemporal resolution and the GLM equations described in 
Appendix E. Specifically, we define VLF potential (P) as the expected number of VLFs per 
surface unit per week. We avoided extrapolating our model outside the observed range of data by 
limiting variables to the range of historical variability for each ecoregion. Projected changes in P 
were examined across 17 GCMs at weekly and annual time- scales between the mid-21st century 
(2041–2070) and late 20th century (1971–2000) runs. We focus on changes in the multi- model 
mean response (defined as the simple average of the 17 GCMs) and identify regions where the 
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signal is robust, defined by where the multi-model mean difference between mid-21st- century P 
and late-20th-century P exceeds two standard deviations of 20th-century runs (i.e. spread among 
models) and at least 90% of the models agree on the sign of change (IPCC, 2013). We also 
quantify changes in P for ecoregion across the 17 models to demonstrate the range and 
robustness of projected changes. Finally, we examined the length of the season during which 
atmospheric conditions are expected to be conducive to VLFs within each ecoregion. We defined 
the length of the VLF season as the number of weeks during which at least one pixel within an 
ecoregion had probability above the historical 99th percentile (defined at the ecoregion level). 

Projected increases in P were modeled across much of the US, with the largest absolute increase 
in regions that observed numerous VLFs in recent decades including much of the inter- mountain 
West covering the Great Basin and Northern Rockies, as well as the Sierra Nevada and Klamath 
Mountains in Northern California. Increases were also projected across Northern Lakes and 
Forests, and in the Southern Coastal Plain, including much of Florida. These changes are 
consistent with increased temperatures, more frequent heat waves, and diminished soil moisture 
during the dry season. The largest relative changes in P were found across the northern tier of the 
US; however, these changes result in moderate absolute increases in P in regions that had 
historically low P. 

Non-significant increases in annual P were projected in some non-forested ecoregions of the 
central US including the South-central semiarid prairies ecoregion. Respectively small and 
ambiguous changes in seasonal P were a function of muted and mixed changes in predictor 
variables historically important for VLFs in that region. Conversely, large increases in P were 
noted for the Western Cordillera ecoregion due to increased temperature, and decreased relative 
humidity and precipitation during the summer that collectively lower fuel moisture and increase 
fire danger indices in this flammability limited system. Consequently, a significant and nearly 
symmetric increase in the P on either side of the historic seasonal maximum was modeled for the 
ecoregion that results in heightened P during the core of the fire season and an extension of the 
seasonal window conducive to VLFs. An earlier onset of the VLF season is projected across the 
south-western US including the Warm deserts ecoregion, corresponding to overall warming and 
a northward retraction of the winter storm track that results in decreased spring precipitation and 
a resultant increase in the Initial Spread Index (ISI) – one of the leading predictor variables in 
that ecoregion. Conversely, models do not project any substantial change in these regions near 
the historical end of the VLF season. Similarly, models project an earlier onset of the VLF 
season in the Everglades in relation to anticipated warmer winter temperature and a return to 
normal conditions near the core of the historical VLF season. 

Most ecoregions of the US not only experience higher mean annual P but also a temporal 
expansion of extreme probability with climate change. The largest seasonal expansion of 
extreme probability is projected for the Western Cordillera, Mixed Wood Shield, Cold Deserts or 
Southeast Coastal Plains ecoregions, where large increases in P are projected on either side of the 
seasonal maximum. However, most southern ecoregions (i.e. Everglades, Western Sierra Madre 
or Upper Gila Mountain) are likely to experience asymmetric changes in P, featuring an earlier 
onset of atmospheric conditions favorable to VLF development but only small changes near the 
historical end of the VLF season. Inter-model spread in projected changes in mean annual P and 
weeks of extreme probability are evident; however, nearly all model projections suggest 
increases above historical levels. One outlier model (GFDL-ESM2G) projects a decrease in VLF 
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for the Mixed Wood Shield arising from a reduction in climatic water deficit and its 
incorporation in modeling VLF for that region. 

 

Summary points: 
 

• Anthropogenic climate change is projected to increase VLF potential in the US 
through both an increase in frequency of conditions conducive to VLFs during the 
historical fire season and an extension of the seasonal window when fuels and 
weather support the spread of VLFs.  

• The largest absolute changes are projected for regions across the western US where 
heightened VLF potential is the product of projected increases in fire danger and 
temperature, and decreased precipitation and relative humidity during the fire season.  
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APPENDIX G:  
LITERATURE REVIEW OF THE POTENTIAL FOR 

FUTURE FIRES AND VERY LARGE FIRES  
 

 

In order to put our research in context, we examined how it fits with other studies predicting the 
potential for future fires and/or future very large fires.  

Given the documented increase in wildfire size over the last several decades and the 
overwhelming evidence that suggests future climates will be warmer and drier in many regions 
throughout the continental United States, there is a growing body of scientific research predicting 
potential increases in fire frequency and fire size. We conducted a literature search to identify 
areas where this new line of research is predicting the occurrence of very large wildfires (VLFs) 
over the next 40 to 85 years (Figure G-1). Because of the large variability in how VLFs are 
defined, the spatial scales at which LFs and VLFs are predicted, the climate change projections 
used to identify future climate, and the temporal scale at which fires are predicted (weekly, 
monthly, fire season), we adopted a simplified map overlay approach to identify the areas where 
these recent studies predicted that future VLFs will occur.  

We used internet search engines to identify 27 key publications that might provide long-term fire 
potential forecasts for further review (Tables G-1 and G-2). Each paper was reviewed to identify 
the fire potential forecast (fire size, fire occurrence, fire frequency, area burned) and whether 
specific repeatable forecast locations were provided (mapped forecasts at the pixel, ecosystem, 
ecoregion, or Geographic Area Coordinating Center [GACC]). Eighteen publications (Table G-
2) did not meet the criteria for inclusion: either they did not provide forecasts of long-term fire 
potential or they did not provide spatially explicit information that could help identify areas 
where the study predicted increased or decreased future fire potential.  

The remaining nine publications (Table G-1) suggest that fire potentials would increase under 
future warming scenarios. The majority of publications suggest an increase in fire occurrence 
and/or area burned estimated either monthly or annually but do not specifically forecast potential 
fire size. Three studies (Barbero et al., 2014b; Stavros et al., 2014c; Podschwit, in progress) 
provide specific forecasts of where LFs (>1000 acres) or VLFs (>12,355 acres – Barbero et al., 

2014; >50,000 acres – Stavros et al., 2014c) are likely to occur.  

The papers vary in the spatial and temporal scale at which they map future fire potentials. In 
Figure G-1, we mapped individual forecasts using the spatial scale described in the literature 
(that is, GACCs, ecoregions, and pixels). We show the areas where the greatest likelihood of 
more fire in the future was predicted by each study. Although the variables used to measure 
increased likelihood of future fire varied, the mapped areas tend to represent a >40% increase in 
probability of either more fire or of a future fire being categorized as a VLF.  



 

 -73- 

For publications that used a gridded approach, we georeferenced the map figure and overlaid it 
with a 1/8-degree grid. When multiple temporal scales were reported, we mapped the forecasts at 
either the annual or decadal scale for ease of comparison.  

Most studies focus on the western United States, with six out of nine publications focusing on 
the 11 western states (excluding Alaska and Hawaii). Two publications cover the continental 
United States, while one study focuses on the eastern United States. No study mapped in Figure 
G-1 forecast a high probability for increased likelihood of future fire across the entire west. 
When the results of the eight studies that included the western United States are combined, an 
increased fire potential is noted by at least one study for every land unit within the 11 western 
states. However, the combined results of these studies suggest a higher potential for increased 
fire probability, including VLFs, in the southwest, parts of California, the interior mountain west, 
and along the Rocky Mountains. 

For the eastern United States, increased future fire potential was forecast throughout Appalachia, 
in the Ozark Mountains, and across the mid-western states of Wisconsin, Illinois, Indiana, and 
Ohio. Additional areas where fire potentials were forecast to increase included the Lake State 
Region (Minnesota and Michigan) and southern Florida. 
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Figure G-1. Spatial area forecasts of increased fire potential (fire occurrence and 
area burned) and an elevated chance of VLFs. Nine studies (see Table G-1) 
indicated there would be more fire in the future (2040 to 2100) based on climate 
warming scenarios and downscaled General Circulation Models (GCMs). Three 
of these studies (Barbero et al., 2014b; Stavros et al., 2014b,c; Podschwit, in 
progress) provided forecasts of where increased probabilities of VLFs were 
identified (shown in blue). All other studies are shown in green. Darker shades 
indicate more studies forecasting increased fire potential. 
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Table G-1. Nine studies were identified that predict potential fire occurrence and 
provide specific, mappable locations for where fire potentials, including the 
liklihood of VLFs, are predicted to increase.  

a CGCM – Coupled General Circulation Model  

b GFDL – NOAA Geophysical Fluid Dynamics Laboratory Climate Model 2.1 

  

Publication 
Future Fire Potential Prediction 

(Mapped in Figure 1) 

Barbero et al. (2014b) VLF (>12,355 acres) and large fire (>1,000 acre) probabilities for 
continental United States 

Podschwit (in progress) Large fires >1,000 acres across western United States 

Stavros et al. (2014b,c) VLF (>50,000 acres) and large fire (>1,000 acre) probabilities 
within western United States 

Brown et al. (2004) Potential increases in fire occurrence during 2010-2089 in the 
western United States 

Guyette et al. (2014) 
(CGCMa) 

Percent change in fire occurrence probability between 2001-2020 
and 2080-2100 using PC2FM model in the continental United 
States 

Guyette et al. (2014) 
(GFDLb) 

Percent change in fire occurrence probability between 2001-2020 
and 2080-2100 using PC2FM model 

Hawbaker and Zhu (2012) Annual fire ignition potentials and annual area burned statistics 
for 2041-2050 time period in the western United States 

Hawbaker and Zhu (2014) Annual fire ignition potentials and annual area burned statistics 
for 2041-2050 time period in the eastern United States 

Spracklen et al. (2009) Annual area burned in the western United States from 2046 to 
2055 

Yue et al. (2013) Monthly annual area burned for 2046 to 2065 for the western 
United States 
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Table G-2. Publications reviewed but not included in the map of expected increases 
in future large wildfires. These publications were not included because they do not 
include maps of future wildfire locations, do not include temporal timeframes when 
wildfire potentials are expected to increase, or do not specifically model future 
wildfire occurrence.  

Publication Region Conclusions 

Abatzoglou and 
Kolden (2011) 

Southwest and 
Great Basin deserts 

Suggested increased fire danger potentials and 
longer fire seasons  

Abatzoglou and 
Kolden (2013) 

Western United 
States 

Found strong relationship between atmospheric 
conditions during current fire season and fire 
occurrence 

Batllori et al. 
(2013) 

Mediterranean, 
California Climate-induced changes in fire occurrence 

Barbero et al. 
(2014a) 

Southeast United 
States VLF occurrence related to long-term drought  

Girardin and 
Udelsee (2008) Canada Fire occurrence across Canada expected to increase 

by 34% by 2061 to 2100 

Hurteau et al. 
(2013)  

Southwest United 
States 

Implied that with future climate change, fires would 
be more frequent throughout the region 

Hurteau et al. 
(2014) California Implied that future fires in California would be more 

frequent and emissions would be greater 

Litschert et al. 
(2012) 

Southern Rockies 
(Wyoming, 
Colorado, New 
Mexico) 

Annual area burned predicted to increase across 
GCM models tested 

Littell et al. (2009) Western United 
States 

Correlated wildfire occurrence to climate for 
historical record using historical and modeled 
climate data; no future wildfire forecasting presented  

Liu et al. (2010) Global 
Used KBDIa to suggest that with increased global 
climate there would be a subsequent increase in 
wildfire occurrence and annual area burned 

Liu et al. (2013) Continental United 
States 

Fire potential predicted to increase FEM using 
KBDI as a fire potential index 
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a KBDI – Keetch-Byram Drought Index  

 

Liu et al. (2014) Global 
Burned areas globally expected to increase with 
increased climate warming, as much as 50% increase 
in west 

Luo et al. (2013) Southwestern 
United States 

Increased potential for atmospheric conditions that 
favor large fire growth based on Hanes Index 

McKenzie et al. 
(2014) No spatial area Smoke from wildfires in the future may be more 

intense and widespread 

Mills et al. (2014) Continental United 
States 

Number and size of wildfires expected to increase 
across United States. Mitigating GHG emissions 
could lower the number and size (area burned) of 
future wildfires 

Mitchell et al. 
(2014) 

Southeast United 
States 

High potential for increased fire occurrence 
throughout region 

Preisler and 
Westerling (2006) California Produced statistical model to predict potential for 

large fire occurrence one month in future 

Wimberly and Liu 
(2013) Pacific Northwest Expected increase in annual area burned throughout 

the region 



 

APPENDIX H: 
SMOKE EMISSIONS MAPS 

 

 

We developed a map of gridded wildfire emission rates of particulate matter less than 2.5 
microns in diameter (PM2.5) for use in smoke impact potential calculations (Appendix I). 
Emissions data from a previous study were placed into the North American Regional Reanalysis 
(NARR) grid for the contiguous United States (CONUS). The PM2.5 emissions data came from 
the Smoke and Emissions Model Intercomparison Project (SEMIP), funded by the Joint Fire 
Science Program (project #08-1-6-10). One of the SEMIP test cases examined the fuels, 
consumption, and emissions throughout CONUS (the Fire Everywhere test case). A set of 
sequential model runs of fuel loading, fuel consumption, and emissions were created for every 1-
km grid cell in CONUS.  

The selected PM2.5 emissions data set from SEMIP was based on a 1-km fuelbed map and 
Consume 4.0. The 1-km fuelbed map is a crosswalk between the standard Fuel Characteristic 
Classification System (FCCS) fuelbeds and the Existing Vegetation Types map layer from the 
Landscape Fire and Resource Management Planning Tools Project (LANDFIRE). The FCCS-
LANDFIRE fuelbeds include fuel loadings for downed woody fuels, shrubs, herbs, grasses, 
canopy fuels, snags, stumps, litter, lichens, moss, and duff.  

Consume 4.0 is a model that estimates fuel consumption and emissions by fuel strata (Prichard et 
al., 2006). Climatologically representative fuel moisture values under dry conditions were used 
to predict the fuel consumption and emissions of a 100-acre fire for each fuelbed in the FCCS-
LANDFIRE 1-km map. 

These PM2.5 emissions in tons/acre on the 1-km grid map from the SEMIP were overlaid with 
the NARR half-resolution grid used in this study (same grid and projection as the NARR, but at 
64-km, double the grid spacing of the original NARR). In each grid cell, the PM2.5 emissions of 
all the fuelbeds were averaged to generate the representative smoke emissions value for that grid 
cell. The 1-km pixels associated with the fuelbed that represented water (no fuel loading) were 
excluded from averaging. The resulting emission rate grid is shown in Figure H-1. 
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Figure H-1. Average PM2.5 emissions in tons/acre for CONUS on the NARR half-
resolution grid based on the FCCS-LANDFIRE 1-km fuelbed map and Consume 
4.0 from the SEMIP Fire Everywhere test case.  

For final processing of smoke impact potentials (see Appendix I), emission rates were classified 
into five equally spaced bins. The resulting binned emission rate map is shown in Figure H-2. 
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Figure H-2. Binned PM2.5 emission rates. 

 



APPENDIX I: 
SMOKE TRANSFER FUNCTIONS 

 

 

To determine the likelihood of smoke transport from a fire source location to all other points, we 
employed “transfer functions” using the Hybrid Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model (Draxler and Hess, 1997, 1998). Given a starting point and gridded wind 
fields, HYSPLIT models the hour-by-hour path that a parcel of air takes as it moves through the 
atmosphere. Figure I-1 shows the source locations modeled as well as an illustrative example of 
a single HYSPLIT run originating in North Dakota.  

 

Figure I-1. Trajectory starting locations (red dots) and single trajectory example 
output (black dots). 

The trajectory modeling was done as part of JFSP project # 10-S-02-1, which provides details on 
the trajectory modeling setup. This project used a subset of the trajectory results. For each of the 
starting locations shown in Figure I-1, we used 18 trajectories per day from January 1, 1979, 
through December 31, 2009. The 18 trajectories covered three starting heights (500 m, 1000 m, 
and 1500 m above ground level) at four starting times (0:00, 6:00, 12:00, and 18:00 GMT). 
Trajectories were followed forward in time for 120 hours (5 days). Wind fields were from the 
North American Regional Reanalysis (NARR).  

Trajectories were converted to transfer functions for each site by combining all trajectories 
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within a single climatological week (e.g., January 1-7 across all years), counting hourly 
trajectory points within each analysis grid cell, and normalizing the resulting counts by the 
maximum count. Analysis grid cells were twice the size of the NARR grid (64 km2). Figure I-2 
shows an example transfer function for southeastern Missouri in the first week of October. This 
shows the probability of transport from the origin to other locations in the domain. For example, 
100% of the trajectories travelled through the origin cell in southeastern Missouri, and less than 
5% of trajectories travelled through Ohio. For final analysis, weekly transport functions were 
combined to produce monthly results.  

 

Figure I-2. Transfer function for the climatological week of October 1-7 for a 
grid cell in southeastern Missouri. 

Transfer functions were intersected with a grid of population as part of the smoke impact 
calculation described in Appendix J. The population grid was developed from the 2010 U.S. 
Census numbers at the zip code level. Total zip code population was assigned to each NARR 
grid cell proportionally by area. Figure I-3 shows the gridded population map. Note that 
Mexico’s and Canada’s populations were not included in this analysis, so impacts are somewhat 
underestimated in locations with significant transport out of the United States, such as northern 
Minnesota. 
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Figure I-3. Gridded population based on 2010 U.S. Census. 

 



APPENDIX J: 
SMOKE IMPACTS USING TRANSFER FUNCTIONS 

 

 

To assess the potential for smoke from a fire at a given location to impact populations, we 
created monthly smoke impact potential (SIP) scores by combining smoke emissions maps 
(Appendix H), with transfer functions and population (Appendix I). For a hypothetical fire at 
location l, the monthly transfer function estimates the likelihood of transport to each other 
location (ij) as a fraction less than one. The population at ij is multiplied by the transfer function 
value. This multiplication is done at all locations and the sum provides a metric of likely 
population impact for fires from location l on the given month. For example, as shown in 
Figure J-1 (left), smoke from fires originating near Point Reyes, California, in June is likely to 
transport to populated parts of California (Area 1). Conversely, in October (Figure J-1 right), the 
transport is more likely to be offshore (Area 2). This difference is subtle in the transfer function 
images, but the difference in total population impact across the domain is significant, as shown 
in Figure J-2.  

 

Figure J-1. Transfer functions for June (left) and October (right) for an origin 
near Point Reyes, California. 
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Figure J-2. Monthly population impact for smoke originating in Point Reyes, 
California. 

The analysis above assumes that all fires produce similar smoke impacts. However, fires in some 
regions, such as heavily forested areas or regions with peat soils, emit more smoke per unit area 
burned than other regions, such as grasslands. To account for this, the population impacts were 
scaled by emission rates. Emission rates were determined as shown in Appendix H. Because 
emission rates vary by over an order of magnitude, and population health impacts are not 
expected to vary as much, we binned emission rates into five equally spaced bins. Thus, given 
the same transport population impact as calculated above, the location with the highest emission 
rate will have five times the emissions weighted impact as the location with the lowest emission 
rate. 

Putting together the transport potential, population, and emission rate, we calculate the final 
smoke impact potential SIPl at location l as 

    !"#! = !!,!"×!!"!" ×!"!    Equation J-1 

tl,ij  is the normalized (1 at source cell, <1 elsewhere) transfer function value for source 
location l for grid cell ij 

pij  is the total population within grid cell ij, based on the 2010 zip code census 

ERl  is the binned wildfire PM2.5 emission rate for location l 
The SIP is a qualitative index with non-physical units. For comparison with fire probabilities, we 
normalized SIP indices to the maximum value across all locations and months. Figure J-3 shows 
the SIP values for all months. SIP addresses two factors, the amount of smoke that would be 
generated by a hypothetical large fire, and the number of people that might be exposed to that 
smoke. SIP does not include the likelihood of a fire actually occurring. Thus, the areas with the 
highest SIP values are those with large emission potentials and large populations downwind. The 
spatial patterns are largely consistent from month to month. 
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Figure J-3. SIP by month. 
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APPENDIX K: 
SMOKE CASE STUDIES 

 

 

The BlueSky Framework (BlueSky, Larkin et al., 2009) and HYSPLIT Lagrangian dispersion 
model (Draxler and Hess, 1997, 1998) were executed in an ensemble modeling mode to develop 
probabilistic smoke impact analyses for eight hypothetical very large fire (VLF) scenarios shown 
in Table K-1. Results from two of these scenarios (shown in bold in Table K-1) are presented 
here as case studies. The VLF locations were selected from regions where the trajectory-based 
smoke impact analysis indicated the highest potential for human exposure to smoke from a future 
VLF. 

The emissions and dispersion model simulations were conducted using the USFS BlueSky 
Framework version 3-5-1 (Larkin et al., 2009). Table K-2 summarizes the BlueSky modules used 
to develop emissions estimates and calculate smoke impacts for the VLF scenarios. Consume 4.0 
is the Python recoding of Consume 3.0, completed by the Michigan Technical Research Institute, 
and the Fire Emissions Prediction Simulator (FEPS) plume rise module implements an 
adaptation of the Briggs plume rise algorithm.  

For each VLF scenario in Table K-1, the smoke impacts from a 10,000-acre wildfire ignited at 
midnight local time were modeled each day from 1979 to 2008 during the month in which a VLF 
is most likely to occur (up to 930 HYSPLIT simulations per scenario). For the Ozarks case, a 
simulation was performed every third day during the three months in which a VLF in that region 
is most likely to occur. A VLF might burn 50,000 acres or more over the course of several days 
or weeks, but 10,000 acres is a reasonable burn area for the first day of a VLF event based on the 
behavior and spread of large fires that have occurred in the past. Each HYSPLIT simulation was 
run for 48 hours, with all of the fire emissions occurring within the first 24 hours. During the last 
24 hours, fire emissions were turned off while smoke previously injected into the modeling 
system continued to be transported and dispersed. This approach simulates the potential smoke 
impacts over a 48-hour period from a 1-day burn cycle. 

The HYSPLIT simulations were driven by three-dimensional meteorological data from the North 
American Regional Reanalysis (NARR) (Mesinger et al., 2006), a regional long-term, 
dynamically consistent, gridded weather and climate data set for North America at a 32-km 
horizontal resolution. The NARR combines a mesoscale numerical weather prediction model 
with advanced land surface physics and a data assimilation system that incorporates a full 
complement of observations, precipitation analyses, and satellite data to minimize model error. 
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Table K-1. VLF scenarios selected for probabilistic smoke impact analysis. 

Scenario Coordinates Month 
Modeled FCCS Fuel Bed 

Southern Sierra 35.6º N 118.7ºW August 36 – Live oak – Blue oak woodland 

Northern Minnesota 48.2º N 93.9ºW April 
279 – Black Spruce – Northern white 

cedar – Larch forest 

Northern Sierra 38.5º N 120.4ºW July 
16 – Jeffrey pine – Ponderosa pine – 

Douglas fir – Black oak forest 

Columbia River 46.0º N 122.7ºW August 305 – Red alder forest 

North Carolina 35.7º N 76.2ºW April 170 – Pond pine – Little gallberry – 
Fetterbush shrubland 

Salt Lake City 40.9º N 111.8ºW July 224 – Trembling aspen forest 

West Texas 30.7º N 104.1ºW April 32 – Ponderosa pine – Pinyon pine – 
Juniper forest 

New Jersey 39.7º N 74.6ºW July 107 – Pitch pine – Scrub oak forest 

Ozarks 37.8º N 91.3ºW October- 
December 

90 – White Oak – Northern red oak 
forest 
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Table K-2. BlueSky modules used to develop emissions estimates and calculate 
smoke impacts for the VLF scenarios. 

Modeling Step BlueSky Module 

Fuel Loading Fuel Characteristic Classification (FCCS) (McKenzie et al., 2007) 

Fuel Consumption Consume 4.0 (Prichard et al., 2006) 

Emissions FEPS (Anderson et al., 2004) 

Time Profile Western Regional Air Partnership (WRAP) 

Plume Rise FEPS 

Dispersion HYSPLIT Version 4.9 (Draxler and Hess, 1998) 

 

 

HYSPLIT was configured to run full particle mode, rather than in full puff mode or a hybrid 
puff/particle mode. When a sufficient number of particles are modeled, particle simulations 
provide a more realistic representation of pollutant transport and dispersion. Lofted smoke 
emissions were released at the midpoint between the plume bottom and plume top values 
estimated by the FEPS plume rise module. Smoldering emissions, as well as the surface 
component of the flaming emissions, were released at 10 m above ground level (AGL).  

HYSPLIT predicts pollutant concentrations on a user-defined unprojected latitude-longitude 
sampling grid. For each VLF scenario, a sampling grid at 0.2-degree resolution (approximately 
20 km) was defined. The geographic area for each sampling grid was tailored for each scenario, 
but covered a region that would likely be impacted by smoke within 48 hours of a fire ignition. A 
typical sampling grid size was 20 degrees longitude by 20 degrees latitude. For this study, PM2.5 
predictions from HYSPLIT represent a vertically averaged concentration between the ground 
and 50 m AGL. 

Each HYSPLIT simulation in a VLF modeling scenario is identical except for the days of NARR 
data used. The result is an ensemble of hourly smoke impact predictions based on climatological 
transport patterns during the month(s) in which a VLF is most likely to occur. The ensemble 
model output is aggregated to develop a statistical analysis of the air quality impacts from smoke 
due to the VLF. The statistics developed for this analysis are defined in Table K-3. BlueSky 
performs this statistical post-processing and produces aggregated model results in Network 
Common Data Format (NetCDF) and Google Earth Keyhole Markup language (KML) format. 
Examples from the KML output are shown in the case studies. The raw hourly outputs from each 
simulation are preserved in NetCDF format for future analysis. 
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Table K-3. Statistical metrics used in the ensemble modeling analysis. 

Statistical Metric Definition 

Average impact The average PM2.5 concentration calculated from all hours 
of all HYSPLIT simulations in the ensemble. 

Maximum impact The maximum PM2.5 concentration calculated from all 
hours of all HYSPLIT simulations in the ensemble. 

Probability of impact 

The probability that a given PM2.5 impact level would be 
achieved, calculated as the percentage of HYSPLIT 
simulations in the ensemble in which a particular impact 
level was exceeded. 

 

Northern Sierra 
 

The Northern Sierra VLF is located in Amador County, California, at 4,500 feet in elevation 
approximately 40 miles southwest of Lake Tahoe. The predominant FCCS fuel classification in 
this region is Jeffrey pine, ponderosa pine, Douglas fir, and black oak forest.  

Figure K-1 shows the maximum PM2.5 impact predicted for the Northern Sierra VLF case. This 
peak impact is the highest hourly near-surface PM2.5 concentration predicted by the HYSPLIT 
simulations in the ensemble, and represents the maximum short-term air quality impact that 
might be expected from a Northern Sierra VLF. The highest potential impacts are located in the 
foothills west of the VLF, likely a result of easterly nocturnal drainage flow out of the mountains 
and into the Sacramento Valley. These peak impacts affect numerous foothill communities, as 
well as larger cities such as Stockton and Sacramento. Significant peak impacts also extend 
down the east side of the San Joaquin Valley, impacting cities as far south as Fresno and 
Bakersfield. Finally, westerly flow conditions produce a potential for significant peak impacts in 
South Lake Tahoe and east of the Sierra in Reno and Carson City. 
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Figure K-1. Maximum predicted PM2.5 concentration (µg/m3) for a Northern 
Sierra VLF in July. The fire symbol indicates the VLF location. 

Figure K-2 shows the probability that a VLF in the Northern Sierra in July would produce a 
measurable PM2.5 impact. This probability is computed by calculating the percentage of 
HYSPLIT simulations in the ensemble in which the PM2.5 concentration exceeded 1 µg/m3 for 
one or more hours. The highest probability of smoke impact occurs in the VLF burn area and in a 
lobe extending northeast over Lake Tahoe and into western Nevada. This is the result of westerly 
flow that is predominant in the region during July. A lobe of lower impact probability extends 
southward down the San Joaquin Valley. The effects of terrain blocking by the taller mountains 
southeast of the VLF are apparent. 

One goal of the dispersion model case studies was to confirm that the transport patterns produced 
across CONUS using the simpler transfer functions (see Appendix I) were reasonable. Figure K-
3 shows the transfer function for June for the same starting location as the full dispersion 
simulation in Figures K-1 and K-2. While the units and spatial resolutions of these figures are 
different, the gross spatial patterns are consistent, with the majority of impact shown to the 
northeast, with smaller impacts moving south. 
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Figure K-2. Probability (%) of a 1 µg/m3 PM2.5 impact from a Northern Sierra 
VLF in July. 
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Figure K-3. Transfer function showing fraction of transport from fires originating 
in the Northern Sierra near Lake Tahoe in June. 

 

Southern New Jersey 
 
The southern New Jersey VLF is located in the New Jersey Pine Barrens in Burlington County, 
approximately 25 miles northwest of Atlantic City, 35 miles southeast of Philadelphia, and 75 
miles southwest of New York City. The predominant FCCS fuel classification in this region is 
pitch pine and scrub oak forest. 

Figure K-4 shows the maximum PM2.5 impact predicted for a VLF in the New Jersey Pine 
Barrens in July. The highest potential impacts are located in central and southern New Jersey, 
with significant peak impacts affecting several large cities, including Philadelphia and New York 
City. While peak impacts of greater than 50 µg/m3 are confined mostly to the Atlantic Coast 
region, smaller peak impacts from the Pine Barrens VLF extend throughout much of the 
northeastern United States. 
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Figure K-4. Maximum predicted PM2.5 concentration (µg/m3) for a southern New 
Jersey VLF in July. The fire symbol indicates the VLF location. 

 

Figure K-5 shows the probability that a VLF in the New Jersey Pine Barrens in July would 
produce a measurable (at least 1 µg/m3) PM2.5 impact. The highest probability of smoke impact 
occurs in a lobe extending northeast from the VLF burn area, as a result of the climatological 
southwest flow in July. Smoke impact probabilities of greater than 40% occur from Atlantic City 
to New York City and Long Island, with impact probabilities of at least 10% extending further 
northeast into New England. Figure K-6 shows the transfer function for the New Jersey Pine 
Barrens in July. While both the units and spatial resolution are different, the gross spatial 
patterns are consistent, with the majority of impact extending to the northeast. Cities that are 
generally upwind of the Pine Barrens, such as Philadelphia, have a relatively low probability of 
significant smoke impacts from a Pine Barrens VLF; however, the peak impact map (Figure K-4) 
suggests that these locations could experience significant smoke impacts if a VLF occurred 
during climatologically abnormal conditions (for example, southeasterly flow). 
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Figure K-5. Probability (%) of a 1 µg/m3 PM2.5 impact from a New Jersey Pine 
Barrens VLF in July. 
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Figure K-6. Transfer function showing fraction of transport from fires originating 
from the New Jersey Pine Barrens in July. 
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